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Abstract

This is an implementation of an incremental construction algorithm for convex hulls
in IR? based on [3] using Literate Programming and Leda in C++. The structure
of the program and data types are widely based on [6]. The authors had the kind
of giving me their complete source as a start of my work. While they did the basic
data structure, I added a deletion procedure and numerical correctness, improved
the stability of the algorithm and introduced some other features to make it usable
as an abstract data type by an average LLEDA-user. In [6], the authors included a
solver for Gauf}’-Elimination and a routine for computing hyperplanes which are
soon to be included into LEDA as data types of their own. 1 built in prelimary
releases of these types that were kindly made available to me by Kurt Mehlhorn.
Especially the implementation of the segment-walk-algorithm became considerably
easier. When fiddeling them in and doing other necessary change to the original
code the modular concept of the literate programming was very useful.
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1. Introduction.

This is an implementation of an incremental construction algorithm for convex
hulls in IR? using Literate Programming (cf. [4]) and LEDA (cf. [7]) in C++.
The algorithm has been developed by Clarkson, Mehlhorn and Seidel (cf. [3]).
In [2], a minor modification of this algorithm is described which maintains
convex hulls in arbitrary dimensions without any non-degeneracy assumption.

2. There is a demo program to exercise the implemented data type. While
the implementation is given in section 92, we explain here how it is used. It is
called chull with several options.

There are three ways to feed the data into the program: we can take the
input from the keyboard, from a file or via mouse input from a graphics window
(only if we work in dimension 2). If the input is taken from the keyboard or
from a file, the first number must be an integer specifying the dimension of
the following coordinate vectors. If the input is taken from a file, the second
number in the file is read but ignored by our program (in order to be able to
use input files that are created by the program rbox which generates random
input files; it is a tool of the QHULL-system (cf. [1])). The remaining numbers
in the file are taken as the coordinates of the points. We can call the program
from a shell with the following command line arguments in an arbitrary order:

e m: read input from mouse. (default)

k: read input from keys, first entering the dimension we will work in, then
the coordinates of the points. The input process stops with an end-of-file
(ctrl-D).

o f: read input from a file whose name must be given as the next argument
in the command line.

p: print information about all simplices after each insertion.

n: no display: when working in dimension 2 only draw the final result.

e s: suppress any display when working in dimension 2.

V: use the visibility search method.

M: use the modified visibility search method.
e S: use the segment walking method. (default)
The search methods implement different algorithms for finding facets a point

sees. Which you choose doesn’t incluence the behaviour of the program except
for running time. They are discussed later in detail.
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3. The main goal was to show how a complex algorithm can be implemented
in a way such that everybody can easily understand the program. Therefore, we
use literate programming. From LEDA (a Library of Efficient Data types and
Algorithms) we take some useful and well known data structures. The reader
not familiar with LFEDA should not worry about lines of code like

list (vector) L;
because they all have their natural meaning: L is a list of vectors. All LEDA-
commands are selfexplanatory.

We will first introduce the notation and describe the strategy of the algo-
rithm. To do so, we will essentially cite parts of [3] and [2]. The citations
appear in a smaller font and are terminated by a mention of the source (e.g.,
cited text (cf. reference)).

4. The convex hull is constructed incrementally.

Let R = {#1,...,2,} be the multi-set of points whose convex hull has to be
maintained and let # = x,...2z, be the insertion order. Let m; = =...2;, R; =
{z1,...,2;} and let conv R; be the convex hull of the points in R;. Let d = dimR
be the dimension of the convex hull of R and let DJ = {z;,2;,,...,2;,,,} with
1 <71 <...< jar1 < n be the set of dimension jumps where zj is called a dimension
gump if dimRg_1 < dimRy. Clearly, j3 = 1. In the incremental construction of conv R
we maintain a triangulation A(m;) of conv R;: a simplical complex whose union is
conv R; (a simplical complex is a collection of simplices such that the intersection of
any two is a face of each!). The vertices of the simplices in A(m;) are points in R;.
The triangulation A(w;) induces a triangulation C'H(m;) of the boundary of conv R;:
it consists of all facets of A(m;) which are incident to only one simplex of A(m;). If
z € aff R; then a facet F' of CH(w;) is called wisible from x or z—visible (we also say:
z can see the facet) if  does not lie in the closed halfspace of aff R; that is supported
by F and contains conv R;.

The triangulation A(m) consists of the single simplex {z1}. For ¢ > 2, the tri-
angulation A(;) is obtained from A(m;_1) as follows. If z; is a dimension jump, i.e.,
z; ¢ aff R;_1, then #; is added to the vertex set of every simplex of A(m;_1). If z; is
not a dimension jump then a simplex S(F U {z;}) = conv(F U {z;}) is added for every
z;—visible facet of CH(m;_1). Figure 1 gives an example. For a simplex S let vert(.S)
denote the set of vertices that define this simplex. Tt is clear that A(w) contains a
simplex whose vertex set is precisely the set of dimension jumps. We call this simplex
the origin simplex of A(rw). For every simplex S (besides the origin simplex) we call
the vertex in vert(S) — DJ, that has been inserted last, the peak of S and the facet of
S opposite to the peak the base facet of S. (cf. [2], p. 3)

5. It is convenient to extend A(r) to a triangulation A(7) by also making the facets
of CH(w) the base facet of some simplex: A(r) is obtained from A(7) by adding a
simplex S(F U{0}) with base facet F and peak O for every facet F of CH(w). Here O
is a fictitious point without geometric meaning. We propose to store the triangulation
A(r) as the set of its simplices together with some additional information: For each
simplex S € A(m) we store its set of vertices, the equation of its base facet normalized

"Note that the empty set is a facet of every simplex.
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Figure 1: A triangulation. The dimension jumps are the points z1, x5, and zs.
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Figure 2: An extended triangulation

such that the peak lies in the positive halfspace, and for each simplex S and vertex
z € vert S we store the other simplex? sharing the facet with vertex set vert(S)\ {z}.
We also store a pointer to the origin simplex and a suitable representation of aff R, e.g.,
a maximal set of affinely independent points. The simplical complex A(7) consists
of two simplices: the bounded simplex S({z;}) and the unbounded simplex S({0}).
(A simplex is called bounded if O does not belong to its vertex set and it is called
unbounded otherwise.) (cf. [2], p. 4)

O is also called the anti-origin. Figure 2 shows the extended triangulation of
the example of Figure 1. The points are numbered according to their insertion
time. A base facet is indicated by an extra line. You can see that only the
origin simplex has no base facet. All outer simplices have O as peak. The point
z12 sees the base facets conv(zgz, z7) and conv(z7,z9). The simplex opposite
to the vertex z; with respect to the simplex conv(zy,z3,z5) is the simplex
conv(zs, 5, zs). The vertex opposite to 1 in this simplex is the vertex zs.

2They mean: a pointer to the other simplex.
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6. We give additional details of the insertion process. Consider the addition of the
i~th point z = z;, i > 2. First decide whether z is a dimension jump (an O(d?) test).
If z is a dimension jump then add z; to vert S for every simplex of A(m;_1) and add
the simplex S(F U {O}) to A(m;) for every bounded simplex F' of A(m;_1).

If z; is not a dimension jump then we proceed as described in [3]. We first compute
all z;—visible facets F' of C'H(m;—1) and then update the extended triangulation A
as follows: For each z;-visible facet F' of CH(m;_1) (= z;—visible base facet of an
unbounded simplex in Z(ﬂ'i_l)) we alter the simplex S(F U {6}) of Z(ﬂ'l’_l) into
S(F U {z;}). Moreover, for each new hull facet F € CH(m;) \ CH(m;—1) we add the
unbounded simplex S(F U{0}). In other words, for each horizon ridge f of CH (m;_1),
i.e., ridge where exactly one of the incident facets is x;—visible, we add the simplex
S(f U{z;,0}). The set of z;—visible facets F of CH(m;_1) can be found by visiting
simplices according to the rule: Starting at the origin simplex visit any neighbor of a
visited simplex that has an z;-visible base facet. (cf. [2], p. 4)
We call this search method the wvisibility search method.

Another search method is as follows.
Locate z in T by walking along the segment Oz beginning at O. If this walk enters a
simplex whose peak is the anti-origin, then an z-visible current facet has been found.
Otherwise, a simplex of 7" containing z has been found, showing that z € conv R. In
the former case, find all z-visible hull facets by a search of the simplices incident to
the anti-origin. These simplices form a connected set in the neighbourhood graph. (cf.
[3],p. 7)
This method is called the segment walking method.

7. We also give an overview of the deletion algorithm. The global plan is
quite simple. When a point z is deleted from R, we change the triangulation 7" so that
in effect x was never added. This is in the spirit of §2. The effect of the deletion of =
on the triangulation is easy to describe. All simplices having = as a vertex disappear
(If z is not a vertex of T then T does not change). The new simplices of T' resulting
from the deletion of z all have base facets visible to x, with peak vertices inserted after
x. These are the simplices that would have been included if # had not been inserted
into R. Let R(z) be the set of points of R that are contained in simplices with vertex
z, and also inserted after z. We will, in effect, reinsert the points of R(z) in the order
in which they were inserted into R, constructing only those simplices that have bases
visible to z. On a superficial level, this describes the deletion process. The details

follow. (cf. [3], p. 10)



8. The Basic Structure of the Program.

We want to separate our program in three parts: a header file containing all
definitions for inclusion in other programs, a code file containing all implemen-
tations, and a short demo program mainly used for debugging and presentation.
The fundamental data structures for the simplicial complex will be called class
Simplex and class Triangulation. With these terms, we can give a short
overview of the program now.

9. These parts go into the header file.

(chull.h 9) =

#ifndef CHULL_H

#define CHULL_H
(Header files to be included 12)
(class Triangulation 15)

#endif

10. This is everything that produces code.

(class Simplex 19)
(Member functions of class Triangulation 16)
( Friend functions of class Triangulation 48)

11. Our demo routine.
(main.c 11)=
(Main program 92)

12. From LFEDA we use the data types array, list, h_array, integer, vector,
dictionary and we use streams for [/O.

(Header files to be included 12) =
#include <LEDA/array.h>
#include <LEDA/list.h>
#include <LEDA/h_array.h>
#include <LEDA/integer.h>
#include <LEDA/vector.h>
#include <LEDA/dictionary.h>
#include <LEDA/stream.h>

See also sections 13 and 14.

This code is used in section 9.

13. In order to show triangulations on the screen, we implement a function
that draws the triangulation onto the screen in the two dimensional case using
LEDA’s window type. Therefore, we have to include the appropriate LEDA
header files. We are working with the X11R5 (xview) window environment.
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(Header files to be included 12) +=
#include <LEDA/window.h>
#include <LEDA/plane.h>

14. We use the datatypes d_rat_point and hyperplane? for numerically cor-
rect computations in conjunction with their basic type (LEDA-)integer where
we need to. They provide easy to use member- and friend-functions hiding sev-
eral Gaussian eliminations from the code. They will be integrated into LEDA
soon.

(Header files to be included 12) +=
#include "d_rat_point.h"
#include "hyperplane.h"

FMany thanks to Kurt Mehlhorn for giving me working prelimary versions of them.



15. The Fundamental Data Structures.

Now we can begin to define our fundamental data structures (cf. Section 5).
The whole simplicial complex will be managed by the class Triangulation.
In this class, we store the coordinate vectors of the points given so far (list
coordinates), the dimension of the convex hull of these points (int dcur), the
dimension of the coordinate vectors of the input points (int dmaz ) and a pointer
to the origin simplex, from which we can reach all other simplices. When we
compute the equation for the base facet of an unbounded simplex, it is useful to
know a point which lies in the interior of the origin simplex (cf. Section 83) and
we also need such a point as a starting point for the segment walking method.
An appropriate point is the center point of the origin simplex

deur v:
0= —
Z deur +1°
=0
where vg, « + -, V4eur are the coordinate vectors of the vertices of the origin sim-

plex. To avoid the numerically problematic division, we store in the variable
quasi_center only the sum of the v;’s and when we need O, we have to remind
that O =quasi_center /(dcur + 1). Furthermore, we store a list of all con-
structed simplices (all_simplices) which makes it easier to traverse all simplices
(for instance in the destructor of the class or when displaying the simplicial
complex). With this list, the interested reader may implement a more efficient
copy constructor for the class.

During the insertion of some z;, we have to find the z;-visible facets of
CH (m;—1). For this purpose, we have implemented three search methods: the
visibility search method and the segment walking method described in [3] and
a modification of the visibility search method. For the selection of the search
method, we introduce an enumeration type with the elements VISIBILITY,
MODIFIED_VISIBILITY and SEGMENT_WALK, respectively.

The public member method of Triangulation determines the search
method to be used; it can be changed by the user at any time and its default
value is SEGMENT_WALK. FEach of these search methods stores its result (i.e.,
pointers to the unbounded simplices having the z;-visible facets of C'H (m;_1)
as base facets) in the list visible_simplices.

As the representation of aff R, we use the (affine linearly independent) ver-
tices of the origin simplex.

In order to support the efficient computation of the set R(z)* we need to augment
our data structure slightly. We assume that each point stores a pointer to some simplex
containing it and that every simplex stores a list of the points contained in it. (cf.
[3], p. 12) The pointers to the simplex for each point are stored in a LEDA
h_array simplex. We use h_arrays for the insertion order of the points in the
list coordinates, and to store the position of x in the points-list iff x is an interior
point (nil if it is a vertex). These h_arrays are mainly of use when deleting a
point.

*This set is explained in the discussion of the deletion process (section 51)
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(class Triangulation 15) =
class Simplex; // forward reference
enum search_method {
VISIBILITY, SEGMENT_WALK, MODIFIED_VISIBILITY
b
class Triangulation {
private:
list (d_rat_point) coordinates; // the coordinate vectors of the z;
dictionary (d_rat_point, list (list_item) *) co_indez;
// the index in coordinates for each point

int co_nr; // current max. order nr for the point in coordinates
h_array < list_item , int > order_nr; // order number for each point
h_array < list_item , Simplex x > simplex; // asimplex z belongs to

h_array < list_item , list_item > position;
// position of z in simplex[item_z]-points, nil if z is a vertex

int dcur; // dimension of the current convex hull
int dmaz; // dimension of the coordinate vectors
Simplex xorigin_simplex; // pointer to the origin simplex

d_rat_point quasi_center;
// sum of the coordinate vectors of the vertices of the origin simplex
list (Simplex *) all_simplices; // list of all simplices

( Further member declarations of class Triangulation 26)

void print (Simplex *); // writes some statistics about S to stdout
public:

search_method method;

int searched_simplices; // used for statistical reasons

int created_simplices();

// returns the number of simplices that have been created
void insert(const d_rat_point &z); // insertion routine
bool member(const d_rat_point &z); // to test if
void del(const d_rat_point &z); // deletion routine
d_rat_point find_closest_point (const d_rat_point &z);

// for mouse-convenience
void show (window &W); // draws the triangulation onto the screen
void print_all(); // calls print() for all simplices
void print_extremes(ostream & o); // print outer points
list (d_rat_point) points(); // return coordinates

Triangulation (int d = 0, search_method m = SEGMENT_WALK);
// constructor function with default arguments
~Triangulation ( ); // destructor function
Triangulation (Triangulation &7); // copy-constructor
Triangulation &operator=(const Triangulation &7');
// currently disabled
friend ostream& operator< ( ostream & , Triangulation & ) ;
// 1/0 for

friend istream& operator:> ( istream & , Triangulation & ) ;
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// Triangulations

}i

This code is used in section 9.

16. At the end of the program we want to be able to print the number of
simplices that have been created. If a simplex is the k-th simplex created, its
component sim_nr gets k (cf. Simplex :: Simplex( )).

(Member functions of class Triangulation 16) =
int Triangulation :: created_simplices()
{
Simplex Dummy (2);
static dummys_created = 0;

dummys_created ++;
return Dummy.sim_nr — dummys_created ;

See also sections 17, 18, 21, 27, 28, 29, 30, 31, 32, 36, 38, 41, 45, 46, 47, 50, 51, 57, 81, 83, 85,
86, 88, 90, and 91.

This code is used in section 10.

17. The constructors for class Triangulation are easy to implement. The
default search method is segment walking.
(Member functions of class Triangulation 16) +=
Triangulation :: Triangulation (int d, search_method m):
order_nr(—1), simplex(nil), position(nil)

{

co_nr = (;
deur = —1;
dmaz = d;

searched_simplices = 0;
origin_simplex = nil;
method = m;
inner_simplex = nil;

}

Triangulation :: Triangulation (Triangulation &7) :
order_nr(—1), simplex(nil), position(nil)
{

d_rat_point v;

co_nr = 0;

deur = —1;

dmax =T .dmaz;
searched_simplices = 0;
origin_simplex = nil;
method = T.method;
inner_simplex = nil;
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forall (v, T.coordinates) insert(v); // this is the actual copying

}

18. In the destructor for Triangulation, we have to release the storage which
was allocated for the simplices.

(Member functions of class Triangulation 16) 4+=
Triangulation ::~Triangulation ()
{
Simplex *S;
forall (S, all_simplices) delete (S5);
}

19. Now we define the class Simplex. We make class Triangulation
a friend of class Simplex, so that it can access every private member of
class Simplex. For each simplex, we store its vertices as an array vertices
of pointers to the corresponding occurrences in the list coordinates of class
Triangulation. For the anti-origin we store nil. The array has length dmaz +1
since a simplex has at most dmaz + 1 vertices. When the current hull has di-
mension dcur, only the array elements 0 to dcur are used. Furthermore, we
use the following convention:

the peak vertex of the simplex is always vertices[0].

In order to represent the neighborhood relation, we use a second array
neighbors, such that neighbors[k] points to the simplex opposite to the vertex
vertices[k].

Given a vertex v of a simplex V', let W be the neighbor of V' opposite to
v. It is also useful to find the vertex w opposite to v, i.e., the vertex w of W
which is not a vertex of V. For this purpose, we use an array opposite_vertices:
if v is the k-th vertex of V, i.e., V-vertices[k] = v, and w is the [-th vertex of
W, then V-opposite_vertices[k] = [ and vice versa W-opposite_vertices[l] = k.

Figure 3: The connection of two simplices V and W

Figure 3 illustrates the connection between two adjacent simplices V and W.
The numbers that stand outside the simplices are the numbers of the vertices of
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V', the others being the numbers of the vertices of W. In both simplices, the ver-
tex with number 0 is the peak vertex. The connectivity of V' and W is expressed
as follows: we have V-neighbors[2] = W and W-neighbors[0] = V, indicated
by the corresponding arrows. Furthermore, we have V-opposite_vertices[2] = 0
and vice versa W-opposite_vertices[0] = 2.

For the test whether a point sees a facet of a given simplex, we need the
hyperplane which contains the facet. The normal vector must be oriented in
such a way that the vertex opposite to the face lies in the positive halfspace.
When we need the equation of a hyperplane for a facet 7 of a simplex S (i.e, the
facet opposite to the i-th vertex of S), we call the function compute_plane() (or
more often sees_facet (), which is more comfortable and often suffices.) (cf. Sec-
tion 83), which are members of class Triangulation. Once we have computed
these values for a facet, we store them in the array facets of the correspond-
ing simplex so that they not have to be computed again when they are used
the next time. Unfortunately, after a dimension jump all entries of facets be-
come invalid. Therefore, we store in an array valid_equations the time, i.e.
the current dimension dcur of the convex hull, when the value of the facet’s
equation was computed. The functions sees_facet () and compute_plane () check
whether the respective values of the i-th facet of simplex S are still valid and
if not they compute them. Then they return the valid values. The values are
invalid iff valid_equations[i] # dcur. Then the values are computed new and
valid_equations[i] is set to decur. Initially, they are set to —1 to denote that
none are valid.

The list points holds the position of the inner points of the simplex (points
inserted after the peak vertex that lie in the simplex).

In the implementation of the deletion process we must not forget that we
may have to set valid_equations|[i] to —1 again for all 7 and all simplices if we
delete a vertex which was a dimension jump. This sounds expensive, but we
have to look anyway at all vertices of all simplices of the remaining hull when we
reduce the dimension, so invalidating the plane equations adds only a constant
amount of time.

We also need a mark to indicate visited simplices when we traverse the
triangulation (e.g., for the visibility search or for traversing all simplices when
we process a dimension jump).

In the deletion process we find it useful to have the list_item of a simplex
handy for updating the list all_simplices.

#define anti_origin nil

(class Simplex 19) =
#include "chull.h"
class Simplex {
friend class Triangulation;
// Triangulation has unrestricted access

private:
int sim_nr; // useful for debugging; unique number for each simplex
list_item this_item; // points into all_simplices, for easy deletion

array (list_item) wvertices;
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// pointers to the coordinate vectors of the vertices
array (Simplex x) neighbors;
array (int) opposite_vertices; // indices of opposite vertices
array (hyperplane) facets;
array (int) valid_equations;

// dimension in which corresponding hyperplane was computed
bool wvisited;

// used to mark simplices when traversing the triangulation
list (list_item) points;

// pointer into coordinates of other points located in this vertex
Simplex (int dmaz); // constructor function

~Simplex() {} ; // destructor function
LEDA_MEMORY (Simplex);

See also section 20.

This code is used in section 10.

20.

The constructor for class Simplex sets the size of the arrays and marks

the simplex as not visited.

(class Simplex 19) +=
Simplex :: Simplex (int dmaz):

vertices (0, dmaz ), neighbors(0, dmaz ), opposite_vertices(0, dmaz),
facets (0, dmaz ), valid_equations (0, dmaz)

static int [fdnr = 0;
// each simplex gets a unique number (for debugging)
sim_nr = lfdnr++;
for (int : = 0; ¢ < dmaz; i++) {
neighbors[i] = nil; // to avoid illegal pointers when using print()
valid_equations[i] = —1;
}

visited = false;
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21. The Insert Procedure.

We treat now the insertion procedure as described in Section 6. For the insertion
of a point z, we distinguish three cases:

e 1 is the first point to be inserted.
e z is a dimension jump (and not the first point to be inserted).

e 1z is not a dimension jump.

(Member functions of class Triangulation 16) +=
void Triangulation ::insert(const d_rat_point &z) { dic_item dic_z;
// add z to the points already inserted and store its position in item_z
if (z.dim() # dmaz)
error_handler (99, "chull: incorrect, dimension");

list_item item_z = coordinates.append (z);

order_nr[item_z] = co_nr++; // save the insertion order of z
// store position of z in coordinates in a dictionary
if ((dic.x = co_index.lookup(z)) = nil)
{ dic.x = co_indez .insert (z, new list (list_item) ) ;
} co_indez .inf (dic_z )~append (item_z);
if (deur = -1) { // x is the first point to be inserted
(Initialize the triangulation 22)
}
else if ((dcur < dmaz) A is_dimension_jump (z)) {
// see Section 85
( Dimension jump 40)
}
else {
( Non-dimension jump 23)
}
¥

22. When the first point z is inserted, we must initialize our triangulation,
that means, we must build the first simplices by hand. This is easy to do.
When we only have one point, the simplicial complex consists of two simplices:
the origin simplex, containing x as peak, and an outer simplex outer_simplex
having the anti-origin as its peak. They both point to one another in a natural
way. The origin simplex has no base facet by definition, and because dcur
is 0 outer_simplex has a (—1)-dimensional base facet, that means, it has no
base facet either. The center point of the origin simplex is clearly z. Also the
simplex [item_z] value is clear.

(Initialize the triangulation 22) =
Simplex xouter_simplex; // a pointer to the outer simplex
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deur = 0; // we jump from dimension -1 to dimension 0
origin_simplex = new Simplex (dmaz);
origin_simplex~this_item = all_simplices.append (origin_simplex);
outer_simplez = new Simplex (dmaz);
outer_simplex~this_item = all_simplices.append (outer_simplez);
origin_simplex-~vertices[0] = item_x;

// z is the only point and the peak
origin_simplez-neighbors[0] = outer_simplex;
origin_simplex~opposite_vertices[0] = 0;
outer_simplex-vertices[0] = anti_origin;
outer_simplex~neighbors[0] = origin_simplex;
outer_simplex-~opposite_vertices[0] = 0;
quasi_center = x;
simplex [item_z ] = origin_simplex;

This code is used in section 21.

23. We discuss now how to handle insertions that are not dimension jumps.
If the current dimension is zero, we append z to the points interior to the
origin_simplex, since it is the same point as the only one we already inserted.
Otherwise we first compute the set of all z-visible hull facets. This is described
in detail in Section 26. As a result of this step, we get in visible_simplices the
list of unbounded simplices whose base facets see z, or in inner_simplex the
simplex in which x in located if z lies in the interior of the current hull. If
visible_simplices is empty, then z lies within the current hull and we have to
add it to the simplex it lies in (needed for later deletion). Otherwise, we have
to modify some simplices and to add some new ones as described in Section 6.
Also the neighborhood information has to be updated.
(Non-dimension jump 23) =
// when we come here in dim 0, we inserted the same point twice
if (deur > 0) {
find_visible_facets(z); // see Section 27
if (—visible_simplices.empty()) {
list (Simplex ) NewSimplices;
// Simplices created to store horizon ridges
Simplex *S;
forall (S, visible_simplices) {
/* For each z-visible facet F of C'H (m;_1) alter the simplex S(FU{O})
of A(m;_1) into S(FU{z;}). Note that O is the peak, i.e., S-vertices[0].
*
S-vertices|0] = item_z;
simplex[item_z] = S;
( For each horizon ridge add the new simplex 24)
}
visible_simplices.clear( );
( Update the neighborhood relationship 25)

}
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else // we have to add z to the simplex it lies in
{
position[item_z] = inner_simplex-points.append (item_z);
simplex [item_z] = inner_simplex;
inner_simplex = nil;
}
}

else {
position[item_z| = origin_simplex~points.append (item_z );
simplex [item_z] = origin_simplex ;

}

This code is used in section 21.

24. We now describe how to update the neighborhood relationship and to
compute the equations of the base facets of the new simplices.

At this point, we have found the current hull facets seeing z, in the form of the
simplices whose base facets see z and with the anti-origin as their peak vertex. Let V
be the set of such simplices. Now we update T by altering these simplices and creating
some others. The alteration is simply to replace the anti-origin with z in every simplex
in V.

The new simplices correspond to new hull facets. Such facets are the hull of  and
a horizon ridge f; a horizon ridge is a (d — 2)-dimensional face of conv R with the
property that exactly one of the two incident hull facets sees . Each horizon ridge f
gives rise to a new simplex A; with base facet conv(f U {z}) and peak O. For each
horizon ridge of conv R there is a non-base facet G of a simplex in V such that z does
not see the base facet of the other simplex incident to the facet G. Thus the set of
horizon ridges is easily determined. (cf. [3], p. 8)

The figures 4 and 5 illustrate the situation. In figure 4, z sees the facets
conv(f,g) and conv (g,h). There are two horizon ridges: the points f and h.
The non-base facet G of the above text is the segment s which z does not see.
In figure 5, z has been inserted. Two new unbounded simplices corresponding
to the two horizon ridges have been added.

We find all horizon ridges incident to an updated simplex S with z-visible
base facet by testing all its neighbors (except for the one opposite to its peak)
whether their base facet is z-visible. If the base facet of a neighbor is not z-
visible, we have found a horizon ridge f and have to create a new simplex T
with base facet conv(f U {z}) and peak O. We collect all new simplices in the
list NewSimplices.

We use the index k£ to run through the neighbors of S. When we have
identified a horizon ridge, the vertices of the new simplex T are the vertices of
S with the k-th vertex replaced by z. The peak of T is the anti-origin O. We
could therefore initialize the vertex set of the new simplex T by

T-vertices = S-vertices;

T-vertices[k] = item_z;

T-vertices[0] = anti_origin;

In order to facilitate the update of the neighborhood relation, we proceed
slightly differently: we make z the highest numbered vertex of T, i.e., we replace
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Figure 4: Before z is inserted

Figure 5: After 2 has been inserted
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the second line by

T-vertices[k] = S-vertices|dcur];

T-vertices[dcur] = item_z;
What are the neighbors of the new simplex 7?7 The neighbor opposite to O is
S and the neighbor opposite to z is the neighbor of the old S (i.e., S before the
replacement of its peak O by z) incident to f U O. The neighbors opposite to
the j-th vertex of T, with 1 < j < deur, are computed in the next section.

(For each horizon ridge add the new simplex 24) =
for (int k =1; k < dcur; k++) {
if (sees_facet (S-neighbors[k],0,z) < 0) {
// x doesn’t see the base facet of the neighbor
Simplex T = new Simplex (dmaz);

T-this_item = all_simplices.append (T');
NewSimplices.append (T');
/* Take the vertices of S as the vertices of the new simplex, replacing
the current vertex by the decur-th, the first by = and the peak by O */
int i7;
for (ii = 0; @i < decur; ii++) T-vertices[ii] = S-vertices[ii];
T-vertices[k] = S-vertices|dcur];
T-vertices[dcur] = item_x;
T-vertices[0] = anti_origin;
/* set the pointers to the two neighbors we already know and update
the corresponding entries in the opposite_vertices-arrays */
T-neighbors[dcur] = S-neighbors[k];
T-opposite_vertices[dcur] = S-opposite_vertices|k];
T-neighbors[0] = S;
T-opposite_vertices[0] = k;
/* Also set the reverse pointers from those two neighbors to the new
simplex */
S-neighbors[k]-neighbors[S-opposite_vertices[k]] = T’;
S-neighbors[k|~opposite_vertices[S~opposite_vertices k]| = dcur;
S-neighbors[k] =T}
S-opposite_vertices[k] = 0;
}
}

This code is used in section 23.

25. We now complete the update of the neighborhood relation. How the
neighborhood relationship has to be updated is described in [3] as follows.

It remains to update the neighbor relationship. Let A; = S(conv(fU{z}),0) be a
new simplex corresponding to horizon ridge f. In the old triangulation (before adding
z) there were two simplices V and N incident to the facet conv(f U {0}); V € V 3
and N ¢ V. In the updated triangulation V is replaced by a new simplex V that has

the same base but peak xz. The neighbor of A; opposite to z is N and the neighbor

5V is the set of outer simplices which see z
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opposite to O is V. Now consider any vertex ¢ € f and let S = S;, be the set of
simplices with peak z and including vertex(f) \ {¢} U {2z} in their vertex set; for a face
f we use vertex(f) to denote the set of vertices contained in f. We will show that the
neighbor of A opposite to ¢ can be determined by a simple walk through S. This walk
amounts to a rotation about the (d—2)-face conv(vertex(f)\{¢}U{z}). Note first that
V € 8. Consider next any simplex S = S(F,z) € S. Then F = conv(f\ {q} U{y1,¥y2})
for some vertices y; and ys. Thus S has at most two neighbors in &, namely the
neighbors opposite to y1 and ya respectively. Also, V' has at most one neighbor in
S, namely the neighbor opposite to ¢ (Note that the neighbor opposite to y, where
conv(f U {y}) is the base facet of V, is the simplex A; ¢ S§.). The neighbor relation
thus induces a path on the set § with V being one end of the path. Let V' with base
facet conv(f \ {q} U{y1,y2}) be the other end of the path. Assume that the neighbor
of V' opposite to yi, call it B, does not belong to & and that y3 = ¢ if V.=V’ ie.,
the path has length zero. The simplex B includes vertex(f)\ {¢} U {y2, z} in its vertex
set and does not have peak z. Thus B has peak O and hence B is the neighbor of Aj
opposite to q. This completes the description of the update step. (cf. [3], p. 8)

Ql

Figure 6: Updating the neighborhood relation

Figure 6 illustrates the situation described above in the two dimensional
case. y} and y} are the new values of y; and y; after one rotation around z.
This is the only rotation to be made. Then the neighbor of ¢ with respect to
Ay is found. It is B.

We implement the update of the neighborhood information as follows. For
all new simplices corresponding to horizon ridges, the pointers to the neighbors
opposite to 2 and O are already set (cf. the previous section). It remains to do
the following for every new simplex Af corresponding to horizon ridge f:

For all vertices ¢ of A; except # and O find the neighbor of Ay
opposite to ¢ and set the corresponding neighbor pointer.

Note that we do not need to set the pointer from the neighbor we have found
to Ay, since the neighbor is also a new simplex and hence this pointer will be
(or has been) set anyhow.
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Determining the neighbor of A; opposite to ¢ is done as follows. We walk
through the simplices T along the path through § starting at T = V =V
Af-neighbors[0] as described in [3]. As long as T' € § (i.e., the peak of T is z)
we go to the neighbor T’ of T opposite to y; (for T =V we have y; = ¢). The
new y; is the node of T’ equal to the vertex y; of T. We store the indices of the
vertices corresponding to y; and y, in two variables y7 and y2 respectively. In
V, yo is the vertex opposite to O with respect to As. If 7' ¢ S (i.e., the peak
of T" is not z) we have found the neighbor B of A; opposite to q.

( Update the neighborhood relationship 25) =
Simplex xAf;
forall (Af, NewSimplices) {
for (int k =1; k < deur; k++) {
// for all vertices q of Af except # and O find the opposite neighbor
Simplex «xT = Af-neighbors[0];
int yl;
for (y1 = 0; T-vertices[yl] # Af-vertices[k]; yl++) ;
// exercise: show that we can also start with y7 =1
int y2 = Af-opposite_vertices[0];
while (T-vertices[0] = item_z) { // whileT € 8
/* find new y; */
int new_yl;
for (new_y! = 0; T-neighbors[yl |-vertices[new_y1]| # T-vertices|[y2];
new_yl ++) ;
// exercise: show that we can also start with new_y! =1
y2 = T-opposite_vertices[y1 |;
T = T-neighbors|yl];
yl = new_yl;
}
Af-neighbors[k] = T; // update the neighborhood relationship
Af-opposite_vertices[k] = y1; // update the opposite neighbor
}
}

This code is used in section 23.
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26. Finding z-visible Hull Facets.

For finding the z-visible hull facets, we implement three search methods. The
first method, the visibility-search-method, visits all simplices with z-visible base
facet using depth first search starting in the origin simplex. It is implemented
in the function wvisibility_search().

The second method is a modified-visibility-search-method. The difference is
that if it has once reached an outer simplex, it restricts its search space to un-
bounded simplices. It uses the function search_to_outside (), which is similar to
visibility_search () except that it stops when it has reached an unbounded sim-
plex. It returns a pointer to the unbounded simplex that it has reached or nil if
x lies in the interior of the hull. If it has reached an outer simplex, all unbounded
z-visible simplices are collected using the function collect_outer_simplices().

The third method is the segment-walking-method. This method walks
through the simplices which are intersected by a ray Oz from a point O in
the origin simplex to z. It returns a pointer to the simplex it has reached
(even if this is a bounded simplex). The unbounded z-visible simplices are also
collected using the function collect_outer_simplices().

The visibility search method and the function collect_outer_simplices( ) mark
visited simplices as visited using the wvisited variable. We unmark them using
the function clear_visited_marks().

The roof function for these is find_visible_facets (). It switches to the appro-
priate function und does the cleanup.

( Further member declarations of class Triangulation 26) =
void visibility_search(Simplex *S, const d_rat_point &z);
Simplex xsearch_to_outside (Simplex xS, const d_rat_point &z);
Simplex xsegment_walk (const d_rat_point &z);
void collect_visible_simplices(Simplex S, const d_rat_point &z);
void clear_visited_marks (Simplex *S5);
void find_visible_facets(const d_rat_point &z);
list (Simplex *) visible_simplices; // result of find_visible_facets ()
Simplex xinner_simplex;

// where z is located if visible_simplices is empty
See also sections 34, 39, 56, 80, 82, 84, 87, and &89.

This code is used in section 15.

27. The variable method (which can be changed interactively by the user)
switches between the several search methods.

(Member functions of class Triangulation 16) 4+=
void Triangulation :: find_visible_facets (const d_rat_point &z)
{
Simplex xlast_simplex;
// the simplex in which modified visibility search
// and segment walking have stopped

switch (method) {
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case VISIBILITY: wisibility_search(origin_simplex, x);
// generates list of unbounded simplices with z-visible base facet
clear_visited_marks (origin_simplez );
if ((visible_simplices.empty()) A (inner_simplex = nil))
inner_simplex = origin_simplez;
break;
case MODIFIED_VISIBILITY:
last_simplex = search_to_outside (origin_simplez, z);
if (last_simplex # nil) // if z is not an interior point
collect_visible_simplices (last_simplex , x);
// generates list of unbounded simplices with z-visible base facet

else if (inner_simplex = nil) // x is interior but no simplex found
inner_simplex = origin_simplezx; // so its the origin simplex

clear_visited_marks (origin_simplez );

break;

case SEGMENT_WALK:
default: last_simplex = segment_walk (z);
if (last_simplexz-vertices[0] = anti_origin) {
// if z is not an interior point
collect_visible_simplices (last_simplex , x);
// generates list of unbounded simplices with z-visible base facet
clear_visited_marks (last_simplez);

}

else // x lies in the interior
inner_simplex = last_simplex;
break;

}
}

28. How we can implement wvisibility_search() is described in Section 6: start-
ing at the origin simplex, we visit any unvisited neighbor of a visited simplex
that has an z-visible base facet. Note that by this rule, we do not have to
test the origin simplex (which by definition has indeed no base facet). The
class Triangulation has a member list wvisible_simplices, in which we store
the outer simplices seeing z. The function visibility_search() is recursive and
gets as arguments a reference to the vector z and a pointer xS to the simplex
to be visited.

(Member functions of class Triangulation 16) 4+=
void Triangulation :: visibility_search (Simplex xS,
const d_rat_point &z)
{
searched_simplices++; // only for statistical reasons
S-visited = true; // we have visited S and never come back ...
for (int ¢ = 0; ¢ < deur; i++) {
Simplex «T" = S-neighbors|i; // for all neighbors T" of S
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if (—T-visited) { // if the i-th neighbor has not been visited yet
if (sees_facet(T,0,z) > 0) {
// if @ sees the base facet of the i-th neighbor
if (T-vertices[0] = anti_origin)
// if the i-th neighbor is an outer simplex
visible_simplices.push (T);
// we have found a visible simplex and store it
else // test if z lies within T
{
bool in = true;
int j;
for (j=1; j < dcur; j++)
if (sees_facet(T,7,z) < 0) in = false;
if (in) inner_simplex =T
}

visibility_search (T, z); // do the recursive search

29. Here is the first part of the possibly faster modified visibility search
method: search from the origin simplex to the outside, then search on the outer
facets recursively with depth first search. If z is an outer point, that means it
is contained in one of the outer simplices, the function returns a pointer to the
first outer simplex that is found. If xz is an inner point, the function returns
nil. When we say “possibly faster”, we have in mind that the searching to the
outside (which is nothing but depth first search) will take exactly the same way
as the normal visibility search if z is an interior point, so the time we have spent
is unfortunately the same. It might only be faster if z lies not in the current

hull.

(Member functions of class Triangulation 16) +=
Simplex xTriangulation ::search_to_outside (Simplex 95,
const d_rat_point &z)
{
searched_simplices++; // only for statistical reasons
S-visited = true; // we have visited S and never come back ...
for (int ¢ = 0; ¢ < deur; i++) {
Simplex «T" = S-neighbors|i; // for all neighbors T" of S
if (—T-visited) // if the i-th neighbor has not been visited yet
if (sees_facet (T,0,z) > 0) {
// if @ sees the base facet of the i-th neighbor
if (T-vertices[0] = anti_origin)
// if the i-th neighbor is an outer simplex
return 7’; // we have found to the outside
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else {
bool in = true; // test if z sees the all facets

int j;
for (7 =1; j < dcur; j++)
if (sees_facet(T,7,z) < 0) in = false;
if (in) inner_simplex =T
}

Simplex xresult = search_to_outside (T, z);

if (result # nil) return result;

}
}

return nil;

}

30. Now we collect all outer simplices which are visible from z. The collection
process starts from an outer simplex S.
(Member functions of class Triangulation 16) 4+=
void Triangulation :: collect_visible_simplices(Simplex S,
const d_rat_point &z)

{

searched_simplices++; // only for statistical reasons
S-visited = true; // we have visited S and never come back...
visible_simplices.push (S); // store S as a visible simplex

for (int i = 0; i < dcur; i++) {

Simplex «T = S-neighbors[i]; // for all neighbors T of S

if (=T-visited N\ T-~vertices[0] = anti_origin)
// if the i-th neighbor has not been visited yet
// and is an outer simplex

if (sees_facet (T,0,z) > 0)
// if @ sees the base facet of the i-th neighbor

collect_visible_simplices (T, x); // do the recursive collecting

31. After a visibility search, we always must clear the visited-bits of the visited
simplices. This is done by the recursive function clear_visited_marks(). 1t is
very similar to the function wvisibility_search(). When we start this function,
we also call it with the origin simplex as its argument.

(Member functions of class Triangulation 16) +=
void Triangulation :: clear_visited_marks (Simplex xS5)
{
S-visited = false; // clear the visited-bit
for (int ¢ = 0; 7 < deur; i++) // for all neighbors of S
if (S-neighbors|il-visited) // if the i-th neighbor has been visited
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clear_visited_marks (S-neighbors[i]); // clear its bit recursively

32. The following function implements the segment walk method to find the
simplex containing the point z. Let O denote the “origin”, i.e., any point in
the origin simplex; we can take quasi_center /(dcur 4+ 1) for O. The_s‘)urategy is
very simple: we start at the origin simplex and walk along the ray Oz through
the simplices intersected by this ray until we reach the simplex containing z.
In order to guarantee that the ray Oz passes only through the interior of facets
we perturb the point O. The perturbation scheme is similiar to the well known
perturbation method for the simplex algorithm. Let € be a positiv infinitesimal,
let £ denote the point (,¢2,...,¢%) and let O° = O + €.

The function lambda_cmp () (s. section 36) computes the order in which the
ray Oz intersects various hyperplanes. Only here the perturbation plays a role.
We now develop the mathematics underlying this subroutine.

Let h be a hyperplane. A hyperplane is the zero-set of an affine function

h(z) = > hiz;+hg, where z = (zg,...,24-1) is a point given by its cartesian
0<i<d
coordinates. Let h(z) = 3 h;z;. Then h(z) = h(x) + hg, h is linear, and
0<i<d

h(z+y) = h(z)+h(y), h(Az) = Mr(z), h(z—y) = h(z)—h(y), and h(z)=h(y) =
B(z) — h(y). _
The points on the ray Oz satisfy the equation
r(A) =0 4+ Az — O°).

The parameter value A for which the ray r intersects the hyperplane A is deter-
mined by the equation 0 = A(r(X)) = A(O°) + h(A(z — O%)) = h(O°) + A(h(z) —
h(O%)) = h(O°) + A(h(z) — R(OF)). Thus

h(0°)

M ThGa) - 07 "

The perturbation method guaranties that the denominator is non-zero. Since
O° = O + & we have h(z) — h(O°) = h(z) — h(O) — h(E) = h(z) — h(O) —
€. 3 hié. We conclude that
0<i<d
sign(h(z) — h(O)) , if h(z) — L(O) #0

sign(h(z) — h(O%)) = o _ @)
; — sign(h;) if h(z) — h(0) = 0,

and ¢ is minimal with h; # 0
and analogous
sign(h(0)) , if L(O) #0
sign (h(0°)) = _ (3)
sign(h;) ,if h0) =0,

and ¢ is minimal with h; # 0

Note that at least one of the coefficients hg, ..., hq—1 is non-zero. Hence h(z) —
h(O°) and h(O°) are always non-zero.
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Let ¢ be another hyperplane and let A, = —¢(O°)/(g(z) — ¢(O)) be the
parameter value for the intersection of Oz with g. This ray intersects g before

hiff Ay < Ap. We have

—g(0") —h(O°)
<M= 909 < i) - ROY @

= 9(0%) - (h(z) = h(O)) >7 R(O°) - (9(=) — 9(O%))

where >7 indicates > iff the signs of the two denominators are equal and denotes

< otherwise. Using h(O¢) = h(O) + h(€) and simplifying we obtain
Ag < An = g(O)h(z) — h(O)g(z) + g(E)h(x) — h(E)g(z) > 0
< g(O)h(z) — h(O)g(z) +¢€- Z e (gih(z) — hig(z)) > 0 (5)

0<i<d
F

Under what circumstances is A, = Aj, possible? If A\, = A;, then the expression
F must be zero. This is only possible if either h(z) = g(z) =0, i.e., z lies on h
and on g, orif h = ¢.%

The variable in tells us the number of the facet through which we have
entered current simplex. It changes, when we walk from simplex to simplex.
When we start our walk, there is no facet through which we have entered the
current simplex (which is the origin simplex). This is indicated by setting the
variable in to —1 at the beginning of segment_walk (). We stop our walk, if we
have found the simplex containing  (this might be an unbounded simplex, of
course). We use two arrays fz and fO to store the values of the plane equations
at ¢ and O which we will need several times. We must not forget that these
values have to be divided by z[0] or O[0] respectivly (the common denominator
of the homogeneous coordinates) to get the correct value.

According to [5] the denominator is always positive, so it does not change the
result of LEDA’s sign-function for integers, which we use for a quick comparison
against 0.

(Member functions of class Triangulation 16) +=

Simplex xTriangulation :: segment_walk (const d_rat_point &z)

{
Simplex xS = origin_simplez; // we start at the origin simplex
bool z_in_S = false;

// indicates whether we have found the simplex containing z

int in = —1; // entry facet of the origin simplex
int i; // for treating every facet of S
d_rat_point O = quasi_center /(dcur + 1); // our center point

®Since g(x) # 0 implies h; = gih(z)/g(x) for 0 < i < d and hence h(y) = h(z)/g(z)G(y)
for all y. From 0 = g(O)h(z) — h(O)g(z) we conclude further that 0 = g(O)h(z) + gah(z) —
h(O)g(z) — hag(x) = g(O)h(x) + gah(z) — (h(z)/g9(x))g(O)g(x) — hag(z) = gah(z) — hag(r)
and therefore hq = gah(z)/g(z).
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array (integer) fz (0, dcur); /] hi(z)*z[0]
array (integer) fO (0, dcur); // hi(O)xO]0]
while (-z_in_9) {
searched_simplices++; // only for statistical reasons
( Compute the arrays fr and fO and test whether z € S 33)
if (—z_in_9) {
( Go to the next Simplex on the ray Oz 35)
}
}

return S;

33. The computation of the arrays is easily done by calling S-facet[i].value_at ().
At the same time, we can test whether x lies in the current simplex.

(Compute the arrays fr and fO and test whether z € S 33) =
{
z_in S = true;
// remains true until we find a facet which doesn’t see z
if (S-vertices[0] # anti_origin)
// otherwise we have reached the outside
{
for (i =0; ¢ < decur; i++) {
compute_plane (S, 1); // just in case we need it the first time
// remember to divide these values by the denominator of the point
fr[i] = S-facets[i].value_at (z);
fO[i] = S-facets[i].value_at (O);
if (sign(fz[i]) < 0) // see manual
z_in_.S = false;
}

¥
}

This code is used in section 32.

34. For the comparison of two \’s, we use the function lambda_cmp () defined
in section 36. This function contains the actual perturbation method. A call
lambda_cmp (S, Od, zd, gz, gO, g, hz, hO, h) returns true iff A, < A,. We also
need a function lambda_negative() (s. section 38) which tells us wether Aj is
negative or not.

( Further member declarations of class Triangulation 26) 4+=
bool lambda_cmp(Simplex xS, const integer & Od, const integer &zd,
const integer &gz, const integer &¢O,int g,
const integer &hz,const integer &hO,int h);
bool lambda_negative (Simplex %S, const integer & Od, const integer

&ad,

const integer &nz, const integer &nO,int 7);
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35. Now we describe how to find the facet with number out through which we
will leave the current simplex. Basically we have to find a facet out such that
for all facets ¢ #out A,y < A;. However there is an additional condition to meet
to go only forward on the ray. If we are in the origin_simplex, in = —1 and we
entered the simplex from nowhere. Therefore we additionally have to test if A
is positive. If we are not in the origin_simplex, our A, has to be greater then
Ain, because otherwise the ray intersected facet out prior and we are looking
for the next intersection and not for the last. To put it into formulas, facet ¢
becomes the new candidate for the exit facet out, iff

Ain < Az < Aout

where )\;, is assumed to be 0 when in = —1. The index of a facet is the index
of the vertex opposite to it. Hence we set in to S-opposite_vertices[out].

( Go to the next Simplex on the ray Oz 35) =
int start = 0; // prior to this facet we don’t need to compare
int out; // our hypothesis for desired facet
/* this loop terminates because x doesn’t lie in S when we come here and
deur is at least 1 */
while ((start = in) Vv // don’t compare with ourselves
((in = —1) A lambda_negative (S, O[0], z[0], fz[start], fO[start], start)) v
// when in the origin simplex we must not start with a negative lambda
((in # —1) A lambda_cmp (S, O[0], z[0], fz[start], fO[start], start, fx[in],
fO[in], in))) // otherwise we must not start with Asqre < Aiyy

start ++; // move one ahead
out = start ++;
for (i = start; i < dcur; i++) // compare it to all others

{
if ((7#in)A // we don’t go back ....
(7 # out)) // don’t compare with ourselves
if ((lambda_cmp (S, O[0], z[0], fz[i], fO4], 1, fr[out], fO]out], out)) A
// the basic comparison (A; < Ayut)
((in # —1) V (=lambda_negative (S, O[0], z[0], fz[:], fO[1],7))) A
// additionally for the origin_simplex
((in = =1) V (lambda_cmp (S, O[0], z[0], fx[in], fO[in], in, fz[i], fO[1],1))))
// additionally for all other simplices (A;, < A;)
out = 1;
}
in = S-opposite_vertices|out];
S = S-neighbors[out];

This code is used in section 32.

36. It remains to describe how we decide whether A; < A;. As we have already
mentioned we perturb” O to get O° := O + &, where & = (¢,¢2,..., %)
for some sufficiently small € > 0. Thus, if we consider ¢ small enough, the

"This perturbation method was proposed by Kurt Mehlhorn
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perturbated ray will not go through any vertex or any other intersection of the
hyperplanes of the triangulation. Therefore, the facets which are intersected by
this ray are totally linearly ordered. In equation 5 we developed a condition to
test.

The expression F contains two parts: one independ of £ and one depending
on £. When the first part is # 0, it determines the sign of £ because € is small
enough. If it is zero, the sign is determined by the first factor next to ¢ that is
# 0.

Now let’s have a look at the implementation. In LEDA a d_rat_point
z = (zo,...,%4-1) is represented in homogeneous coordinates (Gy, ..., G4) with

Gg>0and z; = G;/Gy. Let

h:Gi

H@)= Y hiGizGd-(Z

0<i<d 0<i<d

+ hd) =Gy h(aj)

We draw some simple conclusions:

9(0)h(z) — h(0)g(x) = S _ HOW)

04Gq 04G g
= sign(g(O)h(z) — h(O)g(x)) = sign(G(O)H(X) — H(O)G(z)) )
gih(@) = higle) = 25 - HGE

= sign(gih(z) — hig(z)) = sign(g:H (z) — hiG(x)) (7)

Finally observe that H(p) = h.value_at(p) for a d_rat_point p and a
hyperplane h. In conjunction with equation 5 it is now easy to decide whether
/\g < Ap.
lambda_cmp () gets as parameter the simplex S the facets belong to, o4
which is Od in the current implementation, G4 =zd, G(z) =gz, G(O) =¢0O,
the number g of the facet supporting the hyperplane ¢, and the analogous parts
for the hyperplane h.
We first have to decide upon >?. For this reason, we use a variable sigma
which is true iff >7 is >.
(Member functions of class Triangulation 16) +=
bool Triangulation ::lambda_cmp (Simplex S5,
const integer & Od, const integer &zd,
const integer &gz, const integer & g0, int g,
const integer &hz,const integer &hO,int h)

bool sigma;

int diffsign;

bool diffgro;

int 7;

( Decide whether >7 is < or > 37)

1=1; // First we test the parts which are not depending on £.
diffsign = sign(gO * hx — hO * gz ); // left part of F in 5 using 6
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while (diffsign = 0) {
/* the comparison depends on the factor of & when we enter this while-
loop */
diffsign = sign (S-facets|[g][i] * hx — S-facets[h][i] x gz);
// right part of ¥ (3}°...) in 5 using 7
1+t
}
diffgr0 = (diffsign > 0);
return —(diffgr0 & sigma);

}

37. Here we examine the direction of >?. We use another simple conclusion

h(z) — h(0) = &) _ HO) _ 0al(z)-G4H(O)

Gq 04 Gaoq

= sign(h(z) — h(0)) = sign(oqH (z) — G4H(O)) (8)

and equation 2 to inspect the sign of the denominators in equation 4.

(Decide whether >7 is < or > 37) =
{
int [sign, rsign;
int 7; // first compute the sign of the first denominator
1= 1;
Isign = sign(Od x gz — zd * gO);
while (lsign = 0) // lsign depends on &
Isign = —sign (S-facets|[g][i++]); // now the second
1= 1;
rsign = sign(Od x hz — zd * hO);
while (rsign = 0) // rsign depends on &
rsign = —sign(S-facets[h][i++]);
sigma = (lsign = rsign);
}

This code is used in section 36.

38. To decide upon the sign of a A, we use the function lambda_negative ()
which is similar to lambda_cmp() and returns true iff A\, < 0. We have to
decide upon the sign of the numerator and denominator of equation 1. Using
our developed formulas 2 and 3 and our conclusion 8 this thing does not become
a problem either. We do not forget the '—’-sign in front of the right expression
in equation 1.
(Member functions of class Triangulation 16) +=
bool Triangulation :: lambda_negative (Simplex %S,
const integer & Od, const integer &zd,
const integer &hz,const integer &hO,int h)
{
int zsign, nsign; // signs of numerator and denominator
int ¢; // first the numerator
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1= 1;

zsign = sign(hO);

while (zsign = 0) zsign = sign(S-facets[h][i++]);
// now for the denominator

1= 1;

nsign = sign(Od * ht — zd * hO);

while (nsign = 0) nsign = —sign(S-facets[h][i++]);

return (zsign = nsign);
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39. The Dimension Jump.

If the point being inserted is a dimension jump, we have to add it to the set of
vertices of every simplex of the extended triangulation A(m;_;) and for every
simplex F of A(m;_1), we have to add a new simplex S(F U {O}) whose base
facet is the corresponding simplex of the old triangulation and whose peak is
the anti_origin. To do so, we visit all simplices of the old triangulation starting
at the origin simplex and visiting all neighbors of a visited simplex recursively.
This is done by the function dimension_jump ().

( Further member declarations of class Triangulation 26) +=
void dimension_jump (Simplex *S, list_item z);

40. Before we do a dimension jump, we compute the new center of the ex-
tended origin simplex and set the mapping of the new point approbriate.
(Dimension jump 40) =

deur ++;

quasi_center += x;

simplex [item_z ] = origin_simplex;

dimension_jump (origin_simplex , item_z );

clear_visited_marks (origin_simplez );

This code is used in section 21.

41. In this section we describe the function dimension_jump(). Before we
do this, we give an example of a dimension jump in the two dimensional case.
The following figure shows a typical constellation of vertices before a dimension
jump.

Figure 7: We are in dimension 1

The origin simplex is conv(z1,z3). The point z3 is not a dimension jump,
because it lies on the line through z; and z;. At this point we have four
simplices: two unbounded ones to the left and to the right with the anti-origin
as their peak, the origin simplex and the simplex conv(zy, z3) with peak z3 and
the base facet z.

Now we do a dimension jump by inserting a point z4 not colinear with the
other ones.

We have jumped to dimension 2. Now we have six simplices. For the
simplices conv(zy, z2) and conv(zg, z3) we have added two unbounded simplices
below having O as peak. The origin simplex is now conv(zy,z,74). The
simplex conv(zg,z3,z4) has base facet conv(zg,z3) and peak z4. It is the

n_eighbor of the simplex with the vertices z, 23 and O opposite to the vertex

0.
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3l
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€ To T3

Figure 8: A dimension jump

We can divide the simplices of A(r;) into three classes:

e Bounded extended simplices: they result from bounded simplices of

A(m;—1) by adding z to the set of vertices.

o Unbounded extended simplices: they result from unbounded simplices of

A(m;—1) by adding z to the set of vertices.

e New simplices: they result from bounded simplices of A(m;_) by adding
O to the set of vertices.

In this and the subsequent sections we will use the following notation. For
a simplex F of A(m;_1) let vg, ..., Vgeur — 1 be its vertices (vg is the peak). Let
S = S(FU{z}) denote the simplex resulting from extending /. If I’ is bounded,
let S_new = S(F U {O}) be the new simplex constructed for F°. The simplices
of A(m;) look as follows:

e A (bounded or unbounded) extended simplex S has the vertices vy, ...,
Udeur-1, - Since the peak of a simplex is defined to be the vertex inserted
last that was not a dimension jump, the peak of S is the same as the
peak of F'. Thus we append x to the list of vertices, i.e., we write the
appropriate entries at position dcur into the arrays vertices, neighbors
and opposite_vertices.

e A new simplex S_new has the vertices O, vq, ..., Vicur — 1, where O is the
peak.

In the following description we will continue to make the distinction between
a simplex F of A(m;_1) and the extended simplex S resulting from it. In the
implementation, both correspond to the parameter S of dimension_jump(). So
every occurrence of F in the following corresponds to S in the program.
dimension_jump () works as follows. Starting at the origin simplex it visits
all simplices of A(m;_;) using depth-first-search. When a simplex F is visited it
is declared visited, z is added to its set of vertices (this turns I’ into S = S(F'U
{z})), and if the simplex is bounded then a new unbounded simplex S_new =
S(FU{O}) is created. Then all neighbors of I’ in A(m;_y) are visited recursively.
(Note that only the neighbors F-neighbors[0], ..., F-neighbors[dcur — 1] are
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inspected). Once all neighbors are visited we update the neighbor relation.
There we distinguish cases according to whether the simplex is bounded or not.

(Member functions of class Triangulation 16) +=
void Triangulation :: dimension_jump (Simplex 5, list_item z)

{

Simplex xS new;
S-visited = true;
S-~vertices[dcur] = x;
if (S-vertices[0] # anti_origin) { // S is bounded iff peak # O
(Add a new unbounded simplex 42)
}
/* The neighbor opposite to z might not yet exist. We call dimension_jump ()

for all unvisited neighbors of S. x/
for (int k =0; k < dcur — 1; k++) { // for all neighbors of F

if (—S-neighbors[k]-visited) dimension_jump (S-neighbors[k], z);
}
if (S-vertices[0] = anti_origin) {
( Complete neighborhood information if F' is unbounded 43)
}
else {
( Complete neighborhood information if /7 is bounded 44)

}
}

42. TFor every bounded simplex F' of A(m;_;) we add a new simplex S new =
S(FU{0}) with peak O. Tt is the neighbor of the bounded extended simplex
S = S(Fu{z}) opposite to z, and O is the vertex opposite to z. For all vertices
v of S different from z the neighbor of .S opposite to v is the simplex S(F'U{z})
where F’ is the neighbor of I opposite to v. Thus no action is required in the
algorithm.

(Add a new unbounded simplex 42) =
S_new = S-neighbors[dcur] = new Simplex (dmaz);
S_new-this_item = all_simplices.append (S_new);
S-opposite_vertices|[dcur] = 0;
S_new-vertices[0] = anti_origin;
for (int k£ =1; k < dcur; k++) S_new-vertices[k] = S-vertices[k — 1];

This code is used in section 41.

43. We discuss how to compute the neighbors of unbounded extended sim-
plices. The neighbor of an unbounded extended simplex S = S(F' U {z})
opposite to z is the simplex 7" with vert(F) C vert(T) and z ¢ vert(T).
Consider the neighbor I’ € A(m;_;) of F opposite to O. F’ is bounded.
Hence we constructed a simplex S_new’ with vert(S_new’) = vert(F') U {O}.
Since vert(F) \ {O} C vert(F') we have vert(F) C vert(S_new’). Furthermore

z ¢ vert(S_new’). Thus T' = S_new’ is the neighbor of S opposite to z. We
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reach T' from I’ (or S, respectively) by first going to the 0-th neighbor (that is
F" or S', respectively) and then going to the deur-th neighbor of S” which is
S_new’ = S(F'U{z}) = T. The vertex opposite to z with respect to S is the
vertex w opposite to O with respect to F. Note that if w is the i-th vertex of I’
then it is the (i 4 1)-st vertex of S_new’ since we have inserted the anti-origin
in vertices[0].

As in the previous section (bounded extended simplex), the neighborhood
information for vertices v # z of S is the same as for ' and hence there is
nothing to do for them.

( Complete neighborhood information if F’ is unbounded 43) =
S-neighbors|dcur] = S-neighbors|0]-neighbors|dcur];
S~opposite_vertices[dcur] = S~opposite_vertices[0] + 1;

This code is used in section 41.

44. Let F be a bounded simplex of A(m;_;). It gives rise to the extended
simplex S = S(F U {z}) and the new simplex S_new = S(F U {O}). The
neighbors of S were already computed in Section 42. We still need to determine
the neighbors of S_new. In order to create the neighborhood information for a
new simplex S_new, we step through the neighbors of F.

To find the neighbor of S_new opposite to v # O consider the neighbor
F' € A(m;_1) of F opposite to v. If F’ is unbounded, the neighbor of S_new
opposite to v is S’ and the vertex opposite to v is x. If F’ is bounded, the
neighbor of S_new opposite to v is the simplex S_new’ constructed for F’ and
the vertex opposite to v remains the same as in F. Note that a pointer to
S_new’ has been added to the neighbors array of F' at position dcur during a
recursive or a previous call of dimension_jump ().

The neighbor of a new simplex S_new opposite to O is S. The vertex
opposite to O is z. Recall that the k-th vertex of S is the k + 1-st vertex of 5.

( Complete neighborhood information if F' is bounded 44) =
for (int £ =0; k < deur; k++) {
if (S-neighbors|k]-vertices[0] = anti_origin) { // if F'is unbounded
S_new-neighbors[k 4+ 1] = S-neighbors|k];
// the neighbor of S_new opposite to v is S’
S_new-~opposite_vertices[k + 1] = dcur;
// x stands in position deur

else { // F'is bounded
S_new-neighbors[k 4+ 1] = S-neighbors|[k]-neighbors|dcur];
// neighbor of S_new opposite to v is S_new’
S_new-~opposite_vertices[k + 1] = S-opposite_vertices[k] + 1;
// ... vertex opposite to v remains the same ...
// again remember the ‘shifting’ of the vertices one step to the right

}
}

/* the simplex opposite to O with respect to S_new is S, and the vertex is

T x/
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S_new-neighbors[0] = S;
S_new-opposite_vertices[0] = dcur;

This code is used in section 41.

35
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45. Output Routines.

In order to demonstrate our program, we now add to Triangulation a function
show (), which draws (in the special case dmaz = 2) the simplicial complex
into a LEDA-window. Running through the list all_simplices we draw each
simplex. For each simplex we draw its vertices and for each vertex of a simplex
we draw the edges connecting it to the other vertices of the simplex. Clearly we
do not draw the anti-origin and the edges incident to it. Thus the for-loop which
steps through all vertices starts with v = 0 if S is bounded (i.e., S-vertices[0] #
anti_origin) and with v = 1if S is unbounded (i.e., S-vertices[0] = anti_origin).
Furthermore, we draw every point that we have inserted so far onto the screen
(there may be many points that are not vertices of any simplex). We do this
by running through the list coordinates.

(Member functions of class Triangulation 16) +=
void Triangulation :: show(window &W)
{ // We first draw every simplex
Simplex S5
forall (S, all_simplices) {
for (int v = (S-vertices[0] = anti_origin 7 1:0); v < deur; v++) {
// for each vertex except the anti-origin
d_rat_point z = coordinates.contents(S-vertices[v]);
point a = convert(z);
for (int e=v+1; e < deur; e++) {
// draw undrawn edges incident to vertex
d_rat_point y = coordinates.contents(S-vertices[e]);
point b = convert (y);
// draw the edges of unbounded simplices as thick lines
if (S-vertices[0] = anti_origin) W .set_line_width (3);
else W.set_line_width (1);
W .draw_segment (a, b);

}
¥

} // Now we draw every point
d_rat_point z;

forall (z, coordinates) {
point a = convert(z);

W .draw_point (a);

}
¥

46. print_all() prints information about all simplices to stdout. This was
useful for debugging. The information of a single simplex is printed by the
function print().

(Member functions of class Triangulation 16) +=
void Triangulation :: print_all()
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Simplex *S;

cout € "\npdcur," < dcur <€ "Lorigin_simplex:.";
if (origin_simplex # nil) cout < origin_simplex~sim_nr;
else cout < "none'";
cout < " ,quasi_center: " < quasi_center < endl;
forall (S, all_simplices) {
print (S);

}

}

47. Here is a short function that prints the data of a simplex.

(Member functions of class Triangulation 16) +=
void Triangulation :: print(Simplex *5)

{

list_item p;

cout & "\n[" <« S-sim.nr <

for (int : = 0; ¢ < deur; i++) {
if (S-vertices[i| = anti_origin) cout < "[xx] anti-origin";
else cout < ’[’ < order_nr[S-vertices[i]] < ’]1’ <
coordinates.contents(S-~vertices[i]);
cout < "y[";
if (S-neighbors(i])
cout < S-neighbors[il-sim_nr < "1<->,[" < S-opposite_vertices|[i];
else cout <« "*";
cout < "1";
if ((S-vertices[0] # anti_origin V1 = 0) A deur > 0) {
cout € " facet: " <« S-facets|i];
cout € ";valid_equations: " < S-valid_equations[i];

}
cout < endl;

¥
cout < "Points:";
forall (p, S-points)
cout € [’ < order_nr[p] < *1’ < coordinates.contents(p) < *,°;
cout < endl;
cout .flush();

48. Thisis a function that puts the triangulation to a stream by simply writing
its defining points to it. That is done in a way that it can be directly used as
input for another Triangulation.
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(Friend functions of class Triangulation 48) =
ostream & operator < (ostream & o, Triangulation &7')
{
d_rat_point v;
int 7;
0 L T.dmazr < endl < T.coordinates.size( ) < endl;
forall (v, T.coordinates) {
for (i =0; ¢« <T.dmaz; i++) o < v.ccoord (i);
o< endl;

}

return o;
See also section 49.

This code is used in section 10.

49. This function merges the current triangulation with the Triangulation in
the input stream. The exspected format is the same as in the main function.

( Friend functions of class Triangulation 48) 4+=
istream & operator > (istream & i, Triangulation &7T)
{
int dim;
1> dim;
if (dim # T.dmaz)
error_handler (20, "chull: different,dimensionsin stream");
// cannot merge
1> dim; // ignore number of points

d_rat_point v(dim);

while (—i.eof ()) {
1> v,
T.insert (v);

}

return ¢;

50. We should have a function that outputs all outer points of the triangula-
tion, i.e. those located in unbounded simplices. This is useful for constructing
a hull describing the same set as the original hull but with a minimal amount
of points We print each point only once, so we test if it is already printed.

(Member functions of class Triangulation 16) 4+=
void Triangulation :: print_extremes(ostream & o) { Simplex *sim;
list_item p;
int ¢ h_array < list_item , bool > printed (false);

list (list_item) points;
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forall (sim, all_simplices)
if (sim-vertices[0] = anti_origin)
for (i =1; ¢ < dcur; i++)
// the zeroth point is the anti_origin
points.append (sim-vertices[i));
0 < dmazx < endl < points.size() < endl;
forall (p, points) {
if (—printed[p]) {
for (i =0; ¢ < dmaz; i++) o < coordinates|p|.ccoord (i);
0 < endl;
printed[p] = true;
}
}
¥
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51. The Deletion Procedure.

We now come to the deletion procedure. First we repeat the overview from
section 7.

The global plan is quite simple. When a point z is deleted from R, we change the
triangulation 7" so that in effect z was never added. This is in the spirit of §2. The
effect of the deletion of z on the triangulation is easy to describe. All simplices having
z as a vertex disappear (If z is not a vertex of T' then T does not change). The new
simplices of T resulting from the deletion of z all have base facets visible to z, with
peak vertices inserted after . These are the simplices that would have been included
if 2 had not been inserted into R. Let R(z) be the set of points of R that are contained
in simplices with vertex x, and also inserted after x. We will, in effect, reinsert the
points of R(z) in the order in which they were inserted into R, constructing only those
simplices that have bases visible to z. On a superficial level, this describes the deletion
process. The details follow. (cf. [3], p. 10)

We may run into six cases when we delete a point z.
e 1 is not a point of the current hull, so we are done.

e 1 is the only point of a triangulation. We set the triangulation to an
initial state just as if no point was ever added.

e z lies in the interior of some simplex. We delete z from the list of inner
points of this simplex.

e Deleting z reduces the dimension of the current hull. We have to reverse
the process for inserting a dimension jump (section 39).

e Deleting z leaves a "hole” in the hull to be filled with new simplices
induced by points inserted after x.

e z is a dimension jump, but there is another point prevending us from
reducing the dimension of the hull. We search this point, declare it as
new dimension jump and can go on almost exactly as in the previous
case.

The first three cases are rather trivial. We use a dictionary co_index to
look up the position (list_item) of a point in the list coordinates. If we find
none, z is not in the hull. Otherwise we get the list_item item_z of z from
the dictionary. We will use item_z throughout this function as it has more
information assigned to it than z and it is unique. z by itself is not always
unique, as there may be many points with the same coordinates. By taking the
last one of all possible list_items assigned to points with the same coordinates
as x we will remove an inner point if 2 was inserted more than once, improving
our running time a bit this way. When we found z in the current hull, we test
if it is the only point and reset if triangulation if it is so. Next we test wether
x is an inner point by simply looking at it’s position value. If it is a vertex we
handle the remaing cases in section 54.
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(Member functions of class Triangulation 16) +=
void Triangulation ::del(const d_rat_point &z)
{
dic_item dic_z;
/* find z in the defining point set. By taking the last inserted point,
we find inner points when the same point is inserted more often, making
deletion easier this way. */

if ((dic_x = co_indez .lookup(z)) = nil) return;
// @ not in the hull = nothing to do

list_item item_z = co_index.inf (dic_z)~Pop();

if (co_index .inf (dic_z)~empty()) {
delete co_indez.inf (dic_z);
co_index .del_item (dic_z);

}

if (coordinates.length()=1) // x is the last point in the hull
{

(clean up triangulation 52)

return;
}
if ((decur = 0) V (position[item_z] # nil)) // @ is not a vertex
{

(delete inner point 53)

return;

}

( handle non-triv cases 54)

52. Here we set our triangulation to an initial state as it was before the first
point was inserted. We free all memory we allocated dynamically, clear the lists
of points and simplices, and set dcur, origin_simplex, simplex, and position to
their initial state.

(clean up triangulation 52) =
{ Simplex *sim;

forall (sim, all_simplices) delete sim;
all_simplices.clear();

origin_simplex = nil;

coordinates .clear( );

deur = —1;

simplex = h_array < list_item , Simplex * > (nil);
position = h_array < list_item , list_item > (nil);
order_nr = h_array < list_item , int > (—1);

}

This code is used in section 51.
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53. Here we delete an inner point of a simplex. This simplex is directly
determined by the pointer simplex[item_z]. In the same way the position of z
in the list points of the simplex is determined directly by the position h_array.
So it can be deleted in (exspected) constant time.

(delete inner point 53) =
{

Simplex xsim;
sim = simplex[item_z];
sim~points.del_item (position[item_z]);
position[item_z] = nil;
simplex [item_z] = nil;
order_nr[item_z] = —1;
coordinates.del_item (item_z );

}

This code is used in section 51.

54. We need some additional information about the triangulation when we
delete a vertex.

8. FEach point z is

We store some additional information in the insertion process
stored in exactly one simplex in A(m) that contains zj in its closure®. The insertion
algorithm gives us such a simplex. Furthermore we store the set of dimension jumps in
a list'0. For a vertex z; of A(m) let S(z;) denote the set of simplices with vertex z; and
let Sk(z;) be the set of simplices in S(2;) whose peak index is at most k. Furthermore
let R(z;) denote the set of points stored in the simplices in S(z;) and let P(z;) be the
set of vertices that are opposite to z; (z and y are opposite if there is a facet F' of Al!
such that S(F Uz) and S(F Uy) are Simplices of A). (cf. [2], p. 5)

So we introduce the variables Sz to hold the information of S(z), Rz holding
R(z), and Pz holding P(z). The only difference is that z is not contained in
Rz as it should according to the citation above. We can omit it because we
know this fact implicitely. We also want to know if z is a dimension jump (i.e. a
vertex of the origin_simplex), so we use is_dj for that. It may have three values:
0 when z is not a dimension jump, 1 when z is a dimension jump and the new
dimension jump lies on the same halfspace as z, and 2 when z is a dimension
jump and the new dimension jump lies on the other halfspace as z. Finally,
facet denotes the index of the facet of a simplex in Sz opposite to z. You could
also say that it is the index of item_z in the vertices-array of a simplex in Sz.

Our case distinction of the last three cases is based on the following;:

If z; was a dimension jump we have either dim(R\ {z;}) = dimR — 1 or we get a
new dimension jump, say x;. Deletion of x; reduces dimension if all other points lie in
aff(DJ \ {z;}). If P(z;) = 0 and aff(R(z;) \ {z;}) = aff(DJ \ {2;}) then z; reduces
dimension. (cf. [2], p. 6) Otherwise we have to find a new dimension jump and
can go on as if we delete a normal vertex. The test is performed in a loop.

8s. section 27 for actual implementation.

?This only holds for non-vertices.
1The vertices of the origin_simplex are such a list.

"IMHO should be A, see source code for the difference
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Putting each point to be tested in a plane equation takes less time then setting
up an array and then calling is_containted_in_affine_hull() (for d_rat_points),
which solves a system of linear equations.

(handle non-triv cases 54) =
{ int is_.dj = 0;
list (Simplex *) Sz; // list of pointers to simplices containing
h_array < Simplex *, int > facet(—1); // facet[Sx]=facet towards x
list (list_item) Rz;
// pointers into list of points that are in simplices in Sx
list (list_item) Pz; // pointer into list of points opposite to x

(set up variables 55)
if ((is_dj # 0) A (dcur > 0)) {
if (Pz.empty()) {
bool hulls_equal = true;
list_item p;

forall (p, Rz)
if (sees_facet (origin_simplez, facet[origin_simplez],
coordinates[p]) # 0) hulls_equal = false;
if (hulls_equal) {
(reduce dimension 58)
return;

}
)

(get new dimension jump 59)

}

(delete non-dimjmp 63)

}

This code is used in section 51.

55. First we compute Sz by a recursiv function. Then we set Pz to the list
of all points that are opposite to z. Remember that we consider z and y as
opposite if there is a facet I’ of A such that S(F'Uz) and S(F'Uy) are simplices
of A. We say A in contrast to A as we want the anti_origin not to be in Pz.

The computation of Rz is a bit more difficult. To determine R(z), check
first wether x is a vertex of the simplices pointed to by z. If not, z is removed and
we are done. If so, construct the set R(z) by inspection of all simplices incident to
z12. This takes time proportional to d times | R(z) | plus the number of removed
simplices. Sorting the points in R(z) by the time of insertion takes time O(min{n, |
R(z) | loglogn}), where the former bound is obtained by bucketsort and the latter
bound comes from the use of bounded ordered dictionaries. (cf. [3], p. 12)

Since * may be a vertex of more than one simplex we have to exclude
doubles. Additionally we want to insert the inner points of simplices in Sz. So
we use a LEDA h_arraynot_in_Rx of bool to filter the doubles out. Now we sort
Rz according to the insertion time (stored in order_nr) using bucket sort. Our

12These are the simplices in Sz.
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sort-function is an interface to the bucket_sort( )-function for LEDA lists. We
need this for our goal to make the triangulation look as if z was never added,
so we have to preserve the insertion order.

(set up variables 55) =
{ int i
list_item p;
Simplex xsim, xneighbor; h_array < list_item , bool > not_in_Rz (true);
h_array < list_item , bool > not_in_Pz(true);
is_dj = collect_Sx (simplex[item_z], item_z, Sz, facet);
clear_visited_marks (simplex [item_z]);
forall (sim,Sz) {
neighbor = sim-neighbors|facet[sim]];
p = neighbor-vertices[sim-opposite_vertices[facet[sim]]];
/* This if-clause is the difference between A and A. x/
if ((neighbor-vertices[0] # anti_origin) A (not_in_Pz[p] = true)) {
Pz .append (neighbor-vertices[sim~opposite_vertices|facet[sim]]])
not_in_Pz[p] = false;

9

}
for (i =0; ¢ < dcur; i++) {
p = sim-vertices[i);
if ((p # anti_origin) A (p # item_z) A (not_in_Rz[p] = true)) {
Rz .append (p);
not_in_Rx [p] = false;

}
J

forall (p, sim-points) {
Rz .append (p);
vertez [p| = false;

}

sort(Rz); }

This code is used in section 54.

56. This function collects the simplices that belong to Sz and sets up the
h_array facet for the facets towards z of these simplices. It returns 0 if z
if not a dimension jump and 1 otherwise. It is intended to be called with
simplex[item_z] as initial S and assumes that position[item_z] = nil, i.e. that
x is a vertex and not an inner point.

( Further member declarations of class Triangulation 26) 4+=
int collect_Sz (Simplex S, list_item item_z,
list (Simplex *) &Sz, h_array < Simplex %, int > &facet ) ;

57. We first mark the simplex S as visited. Then we test if our current
simplex is the origin_simplex. If so it is inserted at the top of the list for later
convinence, and a flag is set to indicate that z is a dimension jump. All other
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simplices are simply appended. Then we determine the facet[S] as the facet
with the same index as z in the vertices-array of S. We now recursivly visit all
neighbors of S that are not visited yet. We omit the one opposite to x because
it cannot contain z as a vertex. The return values of the recursive calls are
or’ed.

(Member functions of class Triangulation 16) +=
int Triangulation :: collect_Sz (Simplex S5, list_item item_z,
list (Simplex *) &Sz, h_array < Simplex %, int > &facet )
{
int 7;
int is.dj = 0;
S-visited = true;
if (S = origin_simplex) {
is_dj = 1;
Sz .push (S); // insert the origin_simplex first
}
else Sz.append(S); // all other simplices as they appear
for (i = 0; i < dcur; i++) {
if (S-vertices[i] = item_z) facet[S] = i;
else if (S-neighbors[i]-visited = false)
is_dj |= collect_Sz (S-neighbors[i], item_z, Sz, facet);

}

return is_dj;

58. Here we reduce the dimension of a triangulation. This is easier as one
might think.

We simply remove all unbounded simplices that do not have z; in their vertex set and
remove z; from the vertex set of the remaining simplices. (cf. [2], p. 6)

Furthermore, other things to do are only for purposes of the internal house-
keeping. (Mostly remove all references to simplices in Sz from other simplices.)
Special care is needed to maintain the neighborhood relation intact when re-
ordering the arrays.

3l
3l

- Ty

T Ty T3

Figure 9: We have this
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Figure 10: We want this

This is the reversal of the process described in Section 41. You might
recognize the figures.

(reduce dimension 58) =
{

Simplex xsim, xneighbor;

int j;

while (=Sz.empty()) {
stim = Sz.pop();
if (sim-vertices[0] # anti_origin) {

neighbor = sim-neighbors|facet|sim]];

// these are to delete, as they were added with
all_simplices.del_item (neighbor-this_item);
delete neighbor;

}

for (j = facet[sim]; j < dcur; j++)
// delete z from the vertex set

{

sim~vertices[j] = sim~vertices[j + 1];
sim-neighbors|j| = sim-neighbors[j + 1];
sim~opposite_vertices[j| = sim~opposite_vertices[j + 1];
}
for (7 =0; j < dcur; j++) { // adjust the neighborhood relation
if (facet[sim~neighbors[j]] < sim~opposite_vertices[j])
sim-opposite_vertices[j]-—;
// here we invalid the plane equations
sim-valid_equations[j] = —1;
// and we keep our simplex-pointer valid
simplex [sim-vertices[j]] = sim;
} // restore default state of some arrays
sim-vertices|dcur] = nil,

sim~opposite_vertices[dcur] = —1;
sim~neighbors|[dcur] = nil,
sim-valid_equations[dcur] = —1;

}

deur ——; // some care for the internal management

quasi_center —= x;

position[item_z] = nil;
simplex [item_z] = nil;
order_nr[item_z] = —1;
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coordinates.del_item (item_z );

}

This code is used in section 54.

59. Here we handle the deletion of a dimension jump that does not reduce
the dimension of the current hull because there is another point that can serve
as dimension jump. We have to find it, to reconstruct the new origin_simplez
and so on. A bit of theory as base for our algorithm:

By Lemma 2.1 dimension jumps can be moved to the front of the insertion order. Hence
we have

A(r\{zi}) = Alom \ ({2} U DJ))
if z; ¢ DJ and
A(r\ {zi}) = A(o'\ DJ)

if z; € DJ, where ¢ and o° are arbitrary permutations of DJ and DJ \ {z;} resp.
Hence we can assume DJ C R; wlog. If z; € DJ and z; is a new dimension jump we
have by Lemma 2.2

A(r\{z;}) = A(o*mi_1z;m\ (R; UDJ U{z;})).

So we can reinsert x; first, thereby making sure that all dimension jumps are already
inserted when we reinsert the remaining points. The last paragraph descibes reinsertion
of a dimension jump.

Let us finally consider reinsertion of a new dimension jump z;. Since a new dimen-
sion jump is reinserted first we can assume j =i+ 1 wlog. (cf. [2, p. 6])

So we do (or better prepare everything so that is is done in section 63 here).
By making x the “peak” of the origin_simplex we can avoid a special treatment.

(get new dimension jump 59) =
{

list_item new_dj; // pointer in coordinates
list_item p;
int f, h;
Simplex xsim;
hyperplane v;
(find new dimjump 60)
f = facet[origin_simplez];
p = origin_simplex~vertices[0];
origin_simplex-vertices[0] = item_x;
origin_simplex~vertices[ f] = p;
sim = origin_simplex~neighbors|[0];
origin_simplex-neighbors[0] = origin_simplexz-neighbors|f];
origin_simplex~neighbors|[f] = sim;
h = origin_simplex-opposite_vertices[0];
origin_simplex~opposite_vertices[0] = origin_simplex~opposite_vertices[f];
origin_simplex-opposite_vertices[f| = h;
v = origin_simplex~facets[0];
origin_simplex-facets[0] = origin_simplex-facets|f];
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origin_simplex-facets[f] = v;
h = origin_simplex~valid_equations[0];
origin_simplex-valid_equations[0] = origin_simplex-valid_equations|f];
origin_simplex~valid_equations[f] = h;
facet[origin_simplex] = 0;
if (sees_facet (origin_simplex, facet|[origin_simplez],
coordinates[new_dj]) < 0)
// if 2 and new_dj lie in different halfspace
(take care for new origin_simplex 62) // adjust our center point

quasi_center —= x;
quasi_center += coordinates[new_dj];

// the new_dj replaces the old also with its order_nr
order_nr[new_dj] = order_nr[item_z];

// continue as non-dimjump (section 63)

}

This code is used in section 54.

60. Finding another dimension jump is described as follows.
Otherwise we get a new dimension jump z; where

Jj=min{k;zyx & aff(DJ\ {z:})}.

(cf. [2, p. 6]) We have to build a list of all possible_points. 1t consists of Rz
and Pz. They cannot be simply concatenated because of the implementation
of LEDA’s list.conc()-function, which changes both lists involved. So we have
to copy them before we concatenate them. Now we sort our possible_points
according to their insertition order, so we can take the first point in the list
that matches the condition.

(find new dimjump 60) =
{
list (list_item) possible_points;
list (list_item) h;
possible_points = Rx;
h = Px;
possible_points.conc(h);
sort (possible_points); // note that z is not in possible_points
/+ find the first point not in the affine hull of the remaining dimjmps */
do {
new_dj = possible_points.pop( );
} while (sees_facet(origin_simplez , facet[origin_simplez],
coordinates[new_dj]) = 0);

}

This code is used in section 59.

61. If z; and x;41 are on the same side of aff(DJ \ {z;}), then we take the simplices
in S;(z;), replace z; by z;41 and add them to A. Bi41 is the collection of facets on the
boundary of the union of these simplices that are not opposite to z;41. (cf. [2, p. 6])
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We do so in section 63. The only thing to make sure is that the new
origin_simplex is the first simplex built. Therefore we inserted it to the top of
list Sz (s. section 55). This guaranties the first simplex built to fill the hole to
be our new origin_simplex, with new_dj as peak. So it remains nothing to do
for now. Setting the new origin_simplez can only be done when it is built. (s.
section 76)

62. The process for this case is described as follows: 1If z; and z;;; are on
different sides of aff(D.J \ {z;}), no simplices are added. (cf. [2, p. 6]) First we mark
this case by setting new_dj to 2. Now we determine the new orgigin_simplex as
the simplex that shares the facet opposite to z with the old origin_simplex. We
also set the facet value for the new simplex to its correct value. Then we assign
the new origin_simplex. After the origin_simplex is handled this way, the new
facets are collected in section 64, so we do not have to do anything more here.

(take care for new origin_simplex 62) =

{
Simplex xsim;
is_dj = 2;
sim = origin_simplex~neighbors|facet|origin_simplez]];
facet[sim] = origin_simplex~opposite_vertices|facet[origin_simplex]];
origin_simplex = sim;

}

This code is used in section 59.
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63. Deleting a Vertex.

This is the general case for deleting a vertex of a simplex. Deleting a vertex
affects only simplices in Sz. All others remain unchanged.

Hence it is not necessary to reinsert points that are not in R(z;). We assume inductively
that we have A(mg_1 \ {z;}) and A(7 \ {2;} N A(7) and the set Bg_; of facets of
CH(mk-1\z;), that are z;-visible or contain z; in their affine hull and are new. If z; ¢
DJ, B; is the collection of facets opposite to z; in the simplices in S;(z;). Reinsertion
of z; means to add a simplex S(F,z) for every wy-visible facet F' of Bi_1. The
procedure for finding zj-visible facets of Bi_; is analogous to [3]. (cf. [2] p. 6)

We have a "hole” in the triangulation consisting of the simplices containing x.
How it is filled shows figure 11. In this way we handle all points. B corresponds
to newfacets and vbfacets. We actually do not store the real base facet, but the
facet of the neighbor that shares the facet we want. This way we avoid using
simplices from Sz, of which we not always know if they are already deleted or
not. Besides we need the neighbors anyway for updating their neighborhood.

Figure 11: Point 3 is deleted from the triangulation.
Resinserted points are 4 (previously inner point of some simplex) 5, 6, 7.

Unfortunately we could have deleted an outer point, which was limiting the
current triangulation. We handle this special case by inserting the anti-origin O
as the last point because it sees all the remaing uncovered facets, but not storing
it in any simplex if it has no visible new base facets. (O does per definition not
lie in any simplex.) The strategy for this is shown in figure 12.

Another special case are inner points inserted before z. These must lie on
the facet towards z (or even have the same coordinates as some vertex) because
if this would not be the case, they would have let to the creation of a simplex
of their own. So they will remain inner points, although they now belong to a
different simplex. They have to be reinserted for this reason, as their simplex
has = as a vertex and is to be deleted, even if their order_nr is lower than
order_nr|z].
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Figure 12: Point 4 is deleted.
Reinsertion of point 5 induces one new bounded and two new unbounded sim-
plices.

Two major informations are to manage. First, the set of facets without
a neighbor. Second the set of facets without a neighbor visible by the current
point. For both we use similiar constructions: a list of pointers to simplices and
a list of facets (described by their order number) associated with each simplex.
So we can traverse the list of uncovered facet by traversing the list of simplices
containing uncovered facets and then for each such simplex traversing the list
of its uncovered facets. The set of uncovered facets is described by newfacets
and wvisi_facet, the set of z-visible facets by vbfacets and zvisi_facets.

We reinsert the points in the same order as we we inserted them originally.
Therefore we sorted Rz. For each point we find the facets it sees for building
simplices out of them. A slightly different strategy applies for the anti_origin
for that. When we found any visible facets we build the simplices with the
current point as peak. Otherwise we try to insert the point in an already built
simplex as inner point. When it was a vertex but not the anti_origin we look
for horizon ridges resulting from this point. Then we go on to the next point.

When all points are inserted we handle the case of a newly built origin_simplez.
Then we adjust the simplexz[] pointers for all vertices of the new simplices. Now
we have done everything and finally delete z from the list of points.

(delete non-dimjmp 63) =
{ h_array < Simplex x,
list (int) * > visi_facet (nil);
// stores facet of simplex that shares the facet (neighbor)
list (Simplex *) newfacets; // to be ”provided”
h_array < Simplex x,
list (int) * > zvisi_facet (nil);
list (Simplex *) vbfacets; // visible by current point
list (Simplex *) newsimplices; // filling the "hole” of Sx
list_item p; // the point we’re reinserting
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Simplex xsim;
(initialize newfacets 64)
Rz .append ((list_item) anti_origin); // O for unbounded simplices
while (=Rz.empty()) {
p = Rz.pop();
if ((order_nr[p] > order_nrlitem_z]) V
// only vertices after z are reinserted
(p = anti_origin) V // or the anti-origin
(position[p] # nil)) // or inner points
{
if ((position[p] = nil) v // vertices
(order_nr[p] > order_nr[item_z]))
// inner points inserted after z
if (p # anti_origin) (collect visible base facets 65)
else (copy newfacets to visible facets 66 );
if (—vbfacets.empty()) (build simplices for p 67)
else if (p # anti_origin) (insert point in a new simplex 74)
if ((vertex[p] = true) A (p # anti_origin)) (add to newfacets 75)
// see if there are horizon ridges
}

special treatment of newly built origin simplex 76)
handle lost simplices for points 77)
orall (sim, Sz) // only unbounded left

[ e e N )

—

all_simplices.del_item (sim~this_item);
delete sim;
¥
simplex [item_z ] = nil;
position[item_z] = nil;
order_nr[item_z] = —1;
coordinates.del_item (item_z); }

This code is used in section 54.

64. We initialize newfacets with the base facets of all simplices with z as peak.
Additionally we take some other facets when z is a dimension jump and new_dj
lies in a different halfspace than z (is.dj = 2). Here B;;; is the collection of
facets opposite to z; in the simplices in S;41(z;). (cf. [2], p. 6) This simply means
that we have to compare the insertion order number of the peak vertex of each
simplex in Sz with the order number of the new_dj. If it is lower, the facet
towards z is taken. Because we made z ”peak” of the origin_simplex we can
handle this as the general case. Remember that we do not store these facet but
the facet of the simplex that shares it.

We use some auxiliary list_items to walk through the list, because LEDA
objects to modify the current item in an iteration. So we use the item following
the current one as iterator to satisfy LEDA. We have to keep this thing in
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mind when we finish an iteration. Then we have to make the next item the
current. We can iterate lists only by items, so we have to dereference them to
get the information in a list one by one. The same thing also hold for almost
all iterations of lists in this chapter.

We look up the neighbor of the simplex in Sz we wish to store in newfacets.
newfacets constist of pointers to lists so we have to create one if we need to.
In wisi_facet we store the index of the point describing our facet. This index
is relative to neighbor, because we want to store the facet opposite to the one
that we really mean. Next we can delete this simplex because we don’t need it
anymore. To ease testing we set the neighborhood pointer back to nil for the
deleted simplex.

(initialize newfacets 64) =
{
list_item s, n;
Simplex xsim, xneighbor;

s = Sz.first_item();
while (s # nil) // initially all base facets of z are considered
{
n = Sz.next_item (s);
sim = Sz[s];
if ((sim-vertices[0] = item_z) V
// all cases (z= peak(O))
((is_dj = 2) A (sim-vertices[0] # anti_origin) A
// not the anti_origin
(order_nr[sim-vertices[0]] <
order_nr[origin_simplex-vertices|facet[origin_simplez]]])))

// see [2] p. 6

neighbor = sim-neighbors[facet[sim]];
if (visi_facet[neighbor] = nil) {
visi_facet[neighbor] = new list (int);
newfacets.append (neighbor);
}
visi_facet[neighbor]|-append (sim~opposite_vertices|facet[sim]]);
neighbor-neighbors|[sim-opposite_vertices|facet[sim]]] = nil;
// the simplex is not needed anymore
all_simplices.del_item (sim~this_item);
delete sim;
Sz.del_item (s);

} - Y
}

This code is used in section 63.
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65. In this section we scan through the newfacets to see if they are visible by
the point to be reinserted. If so they are inserted in vbfacets and deleted from
newfacets. Besides we take care of the creation of lists when they are needed
and destroy them when they are empty.

The outer while-loop scans through all simplices in newfacets. The inner
while-loop scans through all ”uncovered” facets by a simplex in newfacets. If
it is visible by the point indicated by p then we move it to zvisi_facet[sim],
eventually creating a new list when needed. Back in the outer loop we check if
we still need the list of visible facets for the current simplex.

(collect visible base facets 65) =
{ // Glob. Vars: p
list_item f, n, [, m;
Simplex xsim;
int 7;
f = newfacets.first_item( );
while (f # nil) // forall simplices
{
n = newfacets.next_item (f);
sim = newfacets[f];
[ = visi_facet[sim]-first_item ( );
while (I # nil) // forall facets
{
m = visi_facet [sim]-next_item ([);
i = (xvisi_facet[sim])[l];
if (sees_facet (sim, 1, coordinates[p]) < 0) {
if (zvisi_facet[sim] = nil) {
rvisi_facet[sim] = new list (int);
vbfacets.append (sim);

zvisi_facet [sim]~append (i);
visi_facet[sim]~del_item (l);

}
[ =m;

}

if (visi_facet[sim]~empty()) {
delete visi_facet[sim];
visi_facet[sim] = nil;
newfacets.del_item (f);

}
J=mn;
}
}

This code is used in section 63.

66. This is the simpler case of the previous section when the anti_origin is
reinserted to create new unbounded simplices if we delete an outer point. All
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newfacets are visible. Separatly copying them is not necessary by using LEDA’s
list.conc()-function. It concatenates the second list after the first by changing
some LEDA-internal pointers with the result of vbfacets consisting of the old
vbfacets (empty) followed by the contents of newfacets. newfacets is empty
after this step.

Additionally we collect all bounded simplices left over in Sz. The loop is
almost the same as in section 65, except that we take every bounded facet in
the if-clause. Still remember that we have the opposite facet of the one from a
simplex in Sz in vbfacets and zvisi_facet.

( copy newfacets to visible facets 66) =
{
list_item s, n;
Simplex xsim, *xneighbor;
vbfacets.conc(newfacets); // assume vbfacets should be empty
zvisi_facet = visi_facet ;
s = Sz.first_item( );
while (s # nil) {
n = Sz.next_item (s);
sim = Sz[s];
if (sim-vertices[0] # anti_origin) { // bounded simplices only
neighbor = sim-neighbors[facet[sim]];
if (zvisi_facet[neighbor] = nil) {
zvisi_facet [neighbor] = new list (int);
vbfacets.append (neighbor);
}
zvisi_facet [neighbor|~append (sim-opposite_vertices|facet[sim]]);
neighbor-neighbors|[sim-opposite_vertices[facet[sim]]] = nil;
all_simplices.del_item (sim~this_item);
delete sim;

Sz.del_item (s);

} - Y
}

This code is used in section 63.

67. For all visible base facets we build a new simplex with current point p
as peak. Here is the place where we need vbfacets and zvisi_facet. The outer
while-loop goes through all simplices containing at least one facet visible to
z, the inner while-loop walks through all facets belonging to a simplex. The
pop ()-function of LEDA return the first element of a list and removes it from
the list (similiarly to a stack), so vbfacets will be empty again after this step.
( build simplices for p 67) =
{ // Glob. Vars: p
Simplex xsim;
int f;
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while (—vbfacets.empty()) {
sim = vbfacets.pop();
while (—zvisi_facet[sim]-empty()) {
f = wvisi_facet[sim]~-pop();
( build simplex 68) // and look for neighbors and new facets
¥
delete zvisi_facet[sim];
zvisi_facet[sim] = nil;
¥
}

This code is used in section 63.

68. We found a visible facet and build a new simplex with this facet as base
and the current point as peak. The only neighbor we know at this time is the
neighbor sharing the base facet of the new simplex. Still remember that sim
and f denote the opposite of the base facet of this simplex, so this neighborhood
information is filled in easily.

What are the points of the new simplex? The zeroth point is already given
by p. The remaining points are those of sim (the simplex that shares the base
face of the new simplex) except the one opposite to the base facet of new_sim.
This point has the same index as the facet opposite to it, namely f. So we
know all points of the new simplex and fill them in. The other neighborhood
information is filled in later. Now the new_sim is added to all_simplices and
newsimplices.

(build simplex 68) =

{ // Glob. Vars: p, sim, f
int 7, j;
Simplex xnew_sim;
new_sim = new Simplex (dmaz);
new_sim-vertices[0] = p;
new_sim-neighbors[0] = sim;
new_sim-opposite_vertices[0] = f;
sim~neighbors[new_sim~opposite_vertices[0]] = new_sim;
sim-~opposite_vertices[new_sim-opposite_vertices[0]] = 0;
for (i=0,7=1; i < dcur; i++)

if (i # new_sim-opposite_vertices|0])
new_sim-vertices[j++] = sim-vertices[i];

( put in neighborhood and newfacets 69)
new_sim~this_item = all_simplices.append (new_sim);
newsimplices.append (new_sim);

}

This code is used in section 67.

69. We have to complete the neighborhood of a newly built simplex. That
means we have to look for a neighbor that shares a facet with the new simplex
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for every facet except the base facet. If we find none then this facet will get its
neighbor later when we come here again for another simplex just been built.
We mark this state in an array newf to add it to newfacets later.

First we try to find a neighbor among the simplices in Sz. There are two
cases to distinguish. When we try to complete a bounded simplex we use a
different strategy than for an unbounded simplex. It is possible for the new
simplex to have another facet from this set that was not visible by its peak
point, e.g the last simplex built to fill a hole in the triangulation. Next we
test if a simplex recently built to reconstruct the triangulation has a facet in
common with the new simplex if no neighbor was found in the previous try.

When a facet is left uncovered, it is "new” and added to newfacets. Note
that we start with facet 1 as the base facet is always covered by the step in the
previous section.

Now that we know all our neighbors we can update newfacets for the next
simplex that is to built.

( put in neighborhood and newfacets 69) =
{ // Glob. Vars: new_sim
int 7;
array (bool) newf (0, dcur);
// indicates whether new_sim already has a neighbor opposite to vertex i
newf [0] = false;
for (i =1; ¢ < decur; i++) {
newf [i| = true;
if (new_sim-vertices[0] # anti_origin) (test edge facets 70)
else (look for neighborhood of unbounded simplex 71)
if (newf[i] = true) // no edge facet coverd
(test newfacets 72)
)

(collect new facets 73)

}

This code is used in section 68.

70. Here we look for the neighbor’s data in every ”old” simplex in Sz to copy
them. If the new and the old simplex have the same facet looking towards z,
we can copy the neighborhood data and the old simplex is not needed anymore,
so we delete it. For testing we use the facets_equal ()-function defined in section
90. 7 indicates the facet for which we are searching a neighbor. When we found
one, we copy its relevant data in the new_sim’s structure and set newf[i] to

false.

(test edge facets 70) =
{ // Glob. Vars: i, new_sim, newf
list_item s, n;
Simplex xsim;
s = Sz.first_item();
while (s # nil) // first the egdes of the "hole”
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n = Sz.next_item (s);
sim = Sz[s];
if (facets_equal (new_sim, i, sim, facet[sim])) // see Section 90
{
new_sim-neighbors[i] = sim-neighbors|facet[sim]];
new_sim~opposite_vertices[t] = sim~opposite_vertices|facet[sim]];
newf [i] = false;
all_simplices.del_item (sim~this_item);
delete sim;

Sz.del_item (s);

} - Y
}

This code is used in section 69.

71. We have to set up the neighborhood of a newly inserted unbounded sim-
plex. We look at every facet of every simplex remaining in Sz if it has a facet
(exept its base) in common with the new_sim, and if this is true we can copy
the neighborhood information. Unfortunately we cannot delete sim from Sz
after that because sim may have more than one facet from which we have to
derive the neighborhood relations. (see figure 13.) The last thing to do is to
set newf[7] to false.

Figure 13: z is deleted, causing the unbounded simplices Dy and D; to disap-
pear. N is the new unbounded Simplex replacing Dy and Dj, for which the
neighborhood is to be obtained.

(look for neighborhood of unbounded simplex 71) =
{ // Glob. Vars i, new_sim, newf
int j;
Simplex xsim;
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}

forall (sim,Sz) {

for (j =1; j < dcur; j++)
if (facets_equal (new_sim,1, sim, j))

{

// see Section 90

new_sim-neighbors[i| = sim-neighbors|j];
new_sim~opposite_vertices[i] = sim-opposite_vertices|j];

newf [i| = false;
}

This code is used in section 69.

72.

59

Now we look at every facet in newfacets and visi_facet for a facet shared

with the i-th facet of new_sim. We use again the double while-loop with the

auxiliary list_items as in prior sections to compare every facet in these lists

with the i-th facet of new_sim. When we found a neighbor, we put its data in
the new_sim’s structure and set newf[:] to false. Additionally we can delete this
facet from visi_facet because it now has a neighbor and is therefore no longer a

possible base facet for later built simplices. We may delete visi_facet[sim] when

it is empty after the inner loop.

(test newfacets 72) =

{

// Glob. Vars: new_sim,1

list_item s, n, [, m;
Simplex xsim;

int j;

s = newfacets.first_item ( );

while (s # nil) {

n = newfacets.next_item(s);
sim = newfacets[s];
| = visi_facet[sim]-first_item ( );
while (I # nil) {
m = visi_facet [sim]-next_item (I);
J = visi_facet[sim]~contents(l);
if (facets_equal (new_sim,1, sim, j))
{
new_sim-~neighbors[i] = sim;
new_sim-~opposite_vertices[i] = j;
newf [i| = false;
visi_facet[sim]-~del_item ({);

}
l
}

if (visi_facet[sim]~empty()) {
delete visi_facet[sim];
visi_facet[sim] = nil;
newfacets.del_item(s);

// see Section 90
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This code is used in section 69.

73. We have to run through newf to test whether a facet is new. If this is
the case we append it to the list of newfacets and visi_facet (if needed creat-
ing one for the new_sim). Otherwise we can now complete the neighborhood
pointers from the neighbor back to the simplex itself. Setting the pointers back
to new_sim each time may be overkill, but setting the right pointer never is
definitivly worse then setting it twice.

(collect new facets 73) =
{ // Glob. Vars: newf, new_sim
int 7;
for (i =1; @ < deur; i++)
if (newf[i] = true) {
new_sim~neighbors[i] = nil;
if (visi_facet[new_sim] = nil) {
visi_facet[new_sim] = new list (int);
newfacets.append (new_sim );
}
visi_facet[new_sim]-append (i);
}
else {
new_sim-neighbors[i|-neighbors[new_sim-opposite_vertices[i]] =
new_sim;
new_sim-neighbors[i]~opposite_vertices[new_sim-opposite_vertices|[i|] =
i

}

This code is used in section 69.

74. Now we are in the situation that we did not find any visible facets for a
reinserted point. So we have to find a simplex already built (list newsimplices)
the point lies in and append it to its list of interior points. We try this only for
non-vertices, as we would sometimes insert a point twice otherwise.

A special case are unbounded simplices. We enter this test only if we know
the current point is an interior point of some simplex. So when it lies in an
unbounded simplex, it must lie on the base facet. (We cannot compute a plane
equation for the other facets of an unbounded simplex.) The next thing is that
we do not want an unbounded simplex to have interior points, so we attach it
to its neighbor that shares the base facet.

When we found no simplex containing this point it will be built soon, so we
try the whole procedure again at later time and append the point again to Rz.
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(insert point in a new simplex 74) =
{ // Glob. Vars: p
bool in = false;
Simplex xsim;
int 7;
if (position[p] # nil) { // a vertex will always be a vertex
newsimplices.init_iterator( );
newsimplices.move_iterator (forward );
while ((—in) A (newsimplices.get_iterator () # nil)) {
in = true;
sim = newsimplices[newsimplices.get_iterator ()];
if (sees_facet (sim, 0, coordinates[p]) < 0) in = false;
if (sim-vertices[0] # anti_origin )
// unbounded simplices only have one computable facet
for (i =1; (¢ < decur) A (in = true); i++)
if (sees_facet(sim, 1, coordinates[p]) < 0)
// see also Section 28
in = false;
newsimplices.move_iterator (forward );
}
if (in) {
if (sim-vertices[0] = anti_origin) sim = sim-neighbors[0];
position[p] = sim-~points.append (p);
simplex [p] = sim;
}

else // Try again later to fit in this interior point
Rz .append (p);

¥
}

This code is used in section 63.

75. We found no base facet visible for this vertex and no simplex containing
it. So we look in Sz for all simplices with p as peak and add them to newfacets.
This procedure looks similiar to the one in section 64.

(add to newfacets 75) =
{ // Glob. Vars: p
list_item s, n;
Simplex xsim, xneighbor;
s = Sz.first_item();
while (s # nil) {
n = Sz.next_item (s);
sim = Sz[s];
if (sim-vertices[0] = p) // if p adds a horizon ridge

{

neighbor = sim-neighbors[facet[sim]];
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if (visi_facet[neighbor] = nil) {

visi_facet[neighbor] = new list (int);

newfacets.append (neighbor);
}
visi_facet[neighbor]-append (sim~opposite_vertices|facet[sim]]);
neighbor-neighbors|[sim-opposite_vertices|facet[sim]]] = nil;
all_simplices.del_item (sim~this_item);
delete sim;

Sz.del_item (s);

} - Y
}

This code is used in section 63.

76. This is the special case where we have a new origin_simplex that has just
been built. We cannot assign this value before as it is newly computed.

(special treatment of newly built origin simplex 76) =
{
if (is.dj =1) {
origin_simplex = newsimplices.head ( );
}
}

This code is used in section 63.

77. We have to correct the simplex[]-array for the vertices of the newly built
simplices. The interior points were handled during their insertion (section 74).
We cannot do this earlier because sometimes the simplex belonging to a vertex
did not exist yet at its insertion time. We do not want to attach any points
or vertices to unbounded simplices. We avoid this inconvenience by assigning
their vertices to their bounded neighbor (nr. 0). Since they are shared, this is
correct. We have to reset position in case we made a former interior point to a
vertex, to keep the data structure consistent.

(handle lost simplices for points 77) =
{
Simplex xsim, xsim2;
int ¢;
forall (sim, newsimplices) {
if (sim-vertices[0] # anti_origin) // bounded simplex
sim2 = sim;
else // unbounded simplex
sim2 = sim-neighbors[0]; // th bounded neighbor
for (i =0; ¢ < dcur; i++) {
simplex [sim2-vertices[i]] = sim2;
position[sim2-vertices[t]] = nil;
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}
¥
}

This code is used in section 63.

78. You may have noticed that this chapters handles the case of deleting a
vertex in a different way than described in [3]. I decided to implement a straight
forward algorithm that does everything necessary only when needed because the
algorithm in [3] is even more complicated than this one. They use the following
data structure:

(A) a triangulation T" which consists of T'(21,...,%i—1,Zit1,...,2x—1) and the sim-
plices in T'(m) NT' (7 \ %),

(B) the set B = Bj_1, its neighborhood graph, and for each facet F' € B the simplex
in T incident to F' and the equation of the hyperplane supporting F,

(C) a dictionary for set set of ridges in B.

(cf. [3], p- 13)

Additionally they use a variation of segment walk to find the visible facets
for a point in constant time. I use a linear search here, so the algorithm imple-
mented here runs by a factor of the size of the list of new facets slower than it
is possible. For the sake of simplicity I renounced implementing this segment
walk. Therefore it would be necessary not to delete simplices of Sz after get-
ting the information about facets out of them but to preserve them as they are
needed for the segment walk. This would probably increase the running time
by a considerably amount.
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79. Support Functions.

These are functions for convenience or easier handling of some aspects of the
triangulation. They are very short and easy to implement, so they are not
worth a chapter on each own and gathered here together.

80. The following functions allow more comfort for input e.g. from mouse. It
chooses the point in the current hull which is closest to a given point x.

( Further member declarations of class Triangulation 26) +=
vector make_vector (const d_rat_point &p);

81. We use vectors to make life easier, but at the cost of some precision.
Although when you work with a mouse it is to hard to hit the same pixel twice
and for such cases this function is intended.

(Member functions of class Triangulation 16) +=
vector Triangulation :: make_vector (const d_rat_point &p)
{
int 7;
vector v(p.dim());
for (i =1; i < p.dim(); i++) v[i — 1] = p[i].todouble () /p[0].todouble ( );
return v;

}

d_rat_point Triangulation :: find_closest_point(const d_rat_point &z)
{

double dist;

d_rat_point p(dmaz), cp(dmaz);

vector d(dmaz);

dist = MAXDOUBLE; // approximately 400
forall (p, coordinates) {
d = make_vector (p — z);
if (d.length() < dist) {
dist = d.length();
cp = p;
}
¥

return cp;

82. Hyperplanes are only constructed when needed. These functions take care
of it.
( Further member declarations of class Triangulation 26) 4+=

int sees_facet (Simplex S, int f,const d_rat_point &z);

void compute_plane (Simplex xS, int j);
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83. A hyperplane take all points of a simplex except one as its base. This
special point is the point describing it (i.e., has the same index). It lies in the
positive halfspace of the hyperplane. When this point is the anti_origin, we can-
not compute with it. Therefore we take the origin (O = quasi_center /(dcur+1))
and place it on the negative side of the hyperplane. When we are not in max-
imum dimension, the normal vector has to lie in the affine hull of the current
hull. This means, it is a linear combination of the spanning vectors derived
from the vertices of the current simplex. When this is an unbounded simplex,
we take the origin instead of anti_origin. It is affinely independent of all other
vertices because it lies in the interior of the hull and the other points on the
edge.

When it is possible we take the shortcut of using the precomputed plane
of the neighbor simplex. It describes the opposite space but has the same
equation, so we simply copy it with the sign of the coefficients inverted.

sees_facet () additionally returns the side of the hyperplane where z lies.
Often this is the only interest for computing a hyperplane.

(Member functions of class Triangulation 16) +=
int Triangulation :: sees_facet (Simplex xS, int f, const d_rat_point &z)
{
if (S-valid_equations|f] # dcur) compute_plane(S, f);
return which_side (S-facets|[f], z);

}
void Triangulation :: compute_plane(Simplex %S, int f)
{
if (S-valid_equations|[f] # dcur) {
Simplex *NS;
int o;
NS = S-neighbors[f];
o = S-~opposite_vertices[ f];
if ((NS # nil) A (NS~valid_equations[o] = dcur)) // copy the reverse

S-facets[ f] = NS-facets[o].reverse( );

}

else // compute ourselves
{
int 7, j;
array (d_rat_point) P(1, dcur);
I=1
for (i = 0; ¢ < deur; i++)
if (i # f) P[j++] = coordinates[S-vertices[i]];
if (decur = dmaz) {
if (S-vertices[f] = anti_origin)
S-facets[ f] = hyperplane (P, quasi_center /(dcur + 1), —1);
else S-facets[f] = hyperplane (P, coordinates[S-vertices|[f]], 1);

}

else {
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array (integer_vector) N (1, dcur);
d_rat_point p0;
if (S-vertices[f] = anti_origin)
p0 = quasi_center /(dcur + 1); // works, we are convex!
else p0 = coordinates[S-vertices| f]];
J=1
for (i =0; ¢ < dcur; i++)
if (i /)
N[j++] = make_direction_from_point (coordinates[S-vertices|i]] —
p0);
if (S-vertices[f] = anti_origin)
S-facets[f] = hyperplane(P, N, p0,—1);
else S-facets[f] = hyperplane(P, N, p0,1);
}
}
S-valid_equations|f] = dcur;
}
}

84. We need a function is_dimension_jump (), which tells us whether z is a
dimension jump or not.

( Further member declarations of class Triangulation 26) 4+=
bool is_dimension_jump (const d_rat_point &z);

85. How can we test whether z is a dimension jump? z is a dimension jump
iff 2 does not lie in the affine hull of the vertices of the origin simplex. Since all
these vertices are affine-linearly independent by our construction, we only have
to test whether 2 and all these vertices are affine-linearly dependent. We test
this by using the function is_contained_in_affine_hull('), which gets as argument
an array of all the vectors to test.

(Member functions of class Triangulation 16) 4+=
bool Triangulation ::is_dimension_jump (const d_rat_point &z)
{
array (d_rat_point) A(0, dcur);
int 7;
for (i =0; i < dcur; i++)
Ali] = coordinates.contents(origin_simplex-~vertices|[i]);
return —is_contained_in_affine_hull (A, z);

}

86. Sometimes it is useful to know whether a point is contained in the convex
hull. The tests to perform are similiar to those when inserting a point, but no
action is taken. The first case is an empty hull. It surely has no points in it.
The next case is that the point to test would be a dimension jump. If so it
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can not be a member of the hull. When we have come this far we know that
 lies in the affine hull of the triangulation. We call find_visible_facets() to see
whether it belongs to the interior of the hull. If not we have to clear () the list
and return false.

(Member functions of class Triangulation 16) +=

bool Triangulation :: member(const d_rat_point &z)

{
if (dcur = —1) return false; // no points — no members
if (deur < dmazx)

if (is_dimension_jump (z)) return false;

find_visible_facets(z);
if (visible_simplices.empty()) return true;
visible_simplices.clear( );
return false;

87. We sometimes want to sort lists of list_items describing points according
to their order_nr. We use LEDA’s bucket_sort() for lists for this. We have to
declare the order function needed by bucketsort and the sort() function using
it. curr_tria is the replacement for the this-pointer that we cannot use, because
the order_nof function is called from within bucket_sort() and has to be static
for this.

( Further member declarations of class Triangulation 26) 4+=
static int order_nof (const list_item &co);
static Triangulation xcurr_tria;
void sort (list (list_item) & L);

88. This is the implementation. Static members are necessary because they
are called from within bucket_sort() and cannot determine the object instance
(which triangulation) they belong to.

(Member functions of class Triangulation 16) +=
Triangulation *Triangulation ::curr_tria;
// we need to reserve space for it

int Triangulation :: order_nof (const list_item &co)

{

return curr_tria~order_nr|co];
}
void Triangulation ::sort(list (list_item) & L)

{

curr_tria = this;
L.bucket_sort (0, co_nr, order_nof );

}
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89. This function tests whether two facets of two simplices are equal.

( Further member declarations of class Triangulation 26) 4+=
bool facets_equal (Simplex xsim1,int facet!,Simplex *sim2,int facet?);

90. Two facets are equal if they contain the same points. This test is an
easy run through the vertices[] array in each simplex omitting the vertex cor-
responding to the facet being compared. This takes only O(n?) because we are
only comparing pointers (list_item) to vectors, not whole vectors themselves.
Note also that we do not use the operator= for hyperplanes because two
facets may have the same affine hull (hyperplane) but defined by different
sets of points.

(Member functions of class Triangulation 16) +=
bool Triangulation :: facets_equal (Simplex xsim1,int facet! , Simplex
xstm?2,int facet?2)
{
int 72, 7;
for (i =0; ¢ < dcur; i++)
if (i # facetl) {
for (7 =10; 7 < dcur; j++) {
if (j = facet2) continue;
if (sim1-vertices[i] = sim2-vertices[j]) break;
}
if (j = dcur +1) // not found
return false;

}

return true; // all found

}

91. For test purposes we want to know all points inserted by now. So here
they are.
(Member functions of class Triangulation 16) +=

list (d_rat_point) Triangulation :: points()

{

return coordinates;

}
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92. The Demo Program.

We described how to use the demo programm earlier, but we repeat it here for
convenience.

There are three ways to feed the data into the program: we can take the
input from the keyboard, from a file or via mouse input from a graphics window
(only if we work in dimension 2). If the input is taken from the keyboard or
from a file, the first number must be an integer specifying the dimension of
the following coordinate vectors. If the input is taken from a file, the second
number in the file is read but ignored by our program (in order to be able to
use input files that are created by the program rbox which generates random
input files; it is a tool of the QHULL-system (cf. [1])). The remaining numbers
in the file are taken as the coordinates of the points. We can call the program
from a shell with the following command line arguments in an arbitrary order:

e m: read input from mouse. (default)

k: read input from keys, first entering the dimension we will work in, then
the coordinates of the points. The input process stops with an end-of-file
(ctrl-D).

e f: read input from a file whose name must be given as the next argument
in the command line.

p: print information about all simplices after each insertion.
e n: no display: when working in dimension 2 only draw the final result.

e s: suppress any display when working in dimension 2.

V: use the visibility search method.

M: use the modified visibility search method.
e S: use the segment walking method. (default)

We first give a function that tells the user the correct usage of the command
line arguments of the program when he makes a mistake when invoking the
program.

In the command line, the user can give any number of the above arguments,
but only the last ones are valid.

(Main program 92) =
#include "chull.h"
#include <time.h> // we use time( ) and its relatives
void tell_usage (string prg_name)
// prg-name is the name of the executable program
{
cout K "Usage: " < prg-name <
"o lumy kg luf filenamey | uPu lung lusol Vo oMy 1 uST+" < ENdl;
// a regular expression
exit (1);



70 CONVEX HULLS IN ARBITRARY DIMENSIONS

}

See also section 93.

This code is used in section 11.

93. The main program first reads in the command line setting the options,
then it processes the data.
(Main program 92) 4+=
enum input_method {
MOUSE, KEYS, INPUTFILE
};
main (int arge, char *xargv)
{
(Read the command line 94)
( Process the data 95);

}

94. In the command line, every option consists of a single character.
(Read the command line 94) =
string_istream args (argce, argov);
// create an input stream from the command line

string prg_name; // the name of the compiled, executable program
args >> prg_name; // get the name from the command line
string option; // the options we will take from the command line

string data_file = "/dev/null";
// the name of the file that contains the data;
/* data_file is initialized to "/dev/null" to avoid complicated special treat-

ment when no input file is specified */
int dimension; // the dimension we will work in

int number_of_points;

// appears in input files generated by rbox, not used by our program
input_method read_from — MOUSE; // default: read from mouse
search_method m = SEGMENT_WALK; // default: segment walk
bool draw_all = true; // draw every insert step (if dimension = 2)
bool suppress = false; // suppress any display (if dimension = 2)
bool print_simplices = false;

// print information about all simplices after an insert
while (true) {

args > option;
if (args.eof ()) break;
// as long as we have command line arguments
if (option.length() # 1)
// if the current argument has more than one character
tell_usage (prg_name); // tell the correct usage of the program
switch (option[0]) { // which option is to be processed?
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case ’'m’: read_from = MOUSE;
break;
case k’: read_from = KEYS;
break;
case 'f’:
/* this argument must be followed by another argument which is taken

as the name of a file from which we read the data */
args >> data_file; // get the filename

if (args.eof ()) // print error message if no file is specified
tell_usage (prg-name);
read_from = INPUTFILE; // we read from a file

break;

case ’p’: print_simplices = true;
break;

case 'n’: draw_all = false;
break;

case ’s’: suppress = lrue;
break;

case ’V’: m = VISIBILITY;
break;

case ’M’: m = MODIFIED_VISIBILITY;
break;

case ’S’: m = SEGMENT_WALK;
break;

default: tell_usage (prg-name);
break;

}
}

This code is used in section 93.

95. Here is how we process the data.

(Process the data 95) =

/+ if the input is not taken from the mouse, we need a file from which we
read the data */
file_istream file_in(data_file); // file_istream is a LEDA type

if (—file_in) {
cout < "unable to open, file " K data_file € endl;
exit (2);

}

switch (read_from) {

case MOUSE:

{

}
exit (0);
break;

(Input from mouse 96 )
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case KEYS: cout < "Dimension of coordinate vectors:. ";
cin >> dimension;
break;
case INPUTFILE: file_in > dimension;
file_in >> number_of_points;
break;
}
(Input from keyboard or file 97)

This code is used in section 93.

96. We use LEDA’s window type to implement a graphical input tool. We
are working with the X11R5 (xview) window system.

By a click of the left mouse button, we can input a new two dimensional
point into the whole complex. Then the triangulation will be drawn onto the
screen. The convex hull is represented by thick lines, whereas the other lines
of the triangulation are drawn as thin lines. With a click of the middle mouse
button the point next to the mouse pointer is deleted. The triangulation will
be updated immediately. A click of the right mouse button ends the program.
The input points are automatically logged to the file chull.pts.

(Input from mouse 96) =
window W,
W .clear();
Triangulation 7'(2, m);
// we are working in the plane with search method m
array (integer) L(0, 2); // for creation of x

double a, b;

file_ostream protocol ("chull.pts");

int mouse = 0; // variable to indicate which mouse button was pressed
L[0] = 100;

time_t now = time(nil); // What’s the time, please?

protocol < "Chull protocol from " < ctime(&now) < endl;
// write heading
do {
mouse = W.read_mouse (a, b);
// read the window coordinates into @ and b
L[] = a % 100;
L[2] = b % 100;
d_rat_point z(L, homogeneous);

if (mouse =1) { // left button pressed
protocol < "insert " <€ r < endl;
T.insert(z);

}

if (mouse =2) { // middle button pressed
z = T.find_closest_point (z);
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protocol < "delete " € = < endl;
T.del(z);

}

W.clear ();

T .show (W);

if (print_simplices) T.print_all();
} while (mouse # 3); // while mouse click is not the right button
cout L endl <€ "Searched, Simplices: " « T.searched_simplices < endl;
cout < "Simplices created: " < T .created_simplices() < endl,;

// only for statistical reasons

This code is used in section 95.

97. If we take the input from the keyboard or from a file, we read for each
point its dimension coordinates and insert it. If dimension = 2 we also open
a graphics window in order to display the triangulation. The window remains
on the screen until the right mouse button is pressed in it. Keyboard input is
terminated by an end-of-file (ctrl-D). After the the input is read in, the trian-
gulation is cut down piece by piece by deleting the inserted points in random
order in the inputs is not drawn onto the screen or or with every mouseclick by
deleting the point nearest to the center of the window.

(Input from keyboard or file 97) =
Triangulation 7' (dimension, m);
d_rat_point z(dimension);
int mouse;
array (integer) L(0,2);

L[0] = 100;
if (dimension = 2 A —suppress) {
window W;

W .clear();
do {
if (read_from = KEYS) cin > z;
else file_in > x;
if (—(filein.eof () V cin.eof ())) T.insert(z);
if (—suppress A draw_all) {
W .clear();
T.show(W);
}
if (print_simplices) T .print_all();
} while (= (file_in.eof () V cin.eof ()));
W.clear ();
T.show (W);
cout <& "Press,the right but\
ton,in  the drawing window, to terminate,\n" <«
"or middle button to delete a random point.\n";

cout .flush();
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while ((mouse = W .read_mouse()) # 3) {
if (mouse =2) {
L[1] = 50;
L[2] = 50;
d_rat_point z(L, homogeneous);

z = T.find_closest_point(z);
T.del(z);

W.clear();

T.show (W);

}
}
}

else {
do {
if (read_from = KEYS) cin > x;
else file_in > x;
if (—(filein.eof () V cin.eof ())) T.insert(z);
if (print_simplices) T .print_all();
} while (= (file_in.eof () V cin.eof ()));
list (d_rat_point) points = T.points();
points.permute ( );
cout € "\n_insert, finished, now_ deleting points\
uin random order\n\n";
cout .flush();
forall (z, points) T.del(z);
}
cout L endl <€ "Searched, Simplices: " « T.searched_simplices < endl;
cout < "Simplices created: " < T.created_simplices() < endl,;
cout .flush (); // only for statistical reasons

This code is used in section 95.
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We show some running times of our program. The equipment used for this
measures was a PC based on an Intel Pentium processor with 75MHz and 8MB

Running Time Measurements.

ram running Linux.

The tests were performed on a random input created by the following pro-

gram.

(rand.c 98)=

/* The Random Vector Generator x/
#include <stdlib.h>
#include <time.h>

typedef unsigned long int ulong;

int main(argc, argv)

}

int argc;
char *xargv;

ulong dim;

ulong num;

ulong i, j;

if (arge #3) {
printf ("hs :y,<dim> <num>\n", argv[0]);
return 10;

}

dim = strtoul (argv[1], A, 10);

num = strtoul (argv[2], A, 10);

srandom (time (A));

printf ("%1d\n%1d\n", dim, num);

for (1 =0; ¢ < num; i++) {
for (7 =0; j < dim; j++) printf ("%101d.,", random());
printf ("\n");

}
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99. The time used was measured using the UNIX ’time’-command in the fol-
lowing way: ’time -p chull f testinput n s <Method>’, where <Method>
was set to V, M, and S respectively for the same inputfile. The times shown in
the following figure are the 'user’ time in seconds. The ’real’ and the ’sys’
time depend very much on swapping, which the system did heavily during the

tests.
time (in s) time (in s)
searched simplices searched simplices
points A% M S points A% M S
0.38 0.34 0.64 3.03 2.50 2.9
256 2108 2050 1689 256 7290 6360 3169
519 0.60 0.57 1.01 519 5.94 5.09 5.72
3421 3344 2710 16498 | 14673 6609
1.19 1.14 2.03 9.65 8.45 9.64
1024 7004 6883 5515 1024 27502 | 25125 | 11736
2.33 2.19 4.02 16.90 15.07 16.75
2048 14617 | 14472 | 10940 2048 50710 | 47181 | 21096
4.87 4.61 8.44 38.93 35.75 37.00
4096 30617 | 30350 | 23204 4096 126708 | 121531 | 48827
8.59 7.99 15.04 74.15 68.25 72.91
8192 51323 | 51084 | 41497 8192 246240 | 238783 | 98783
23.67 | 21.87 | 44.42 161.68 | 151.45 | 150.50
16384 160550 | 160033 | 121246 16384 556527 | 545401 | 200879
- time (in s) - time (in s)
searched simplices searched simplices
points A% M S points A% M S
198 8.88 7.08 6.09 198 69.17 | 48.28 34.36
8921 6382 2703 33461 | 18606 7144
956 19.27 15.20 12.31
23992 | 17484 5777
519 40.80 32.16 24.34
57648 | 45781 | 12323
1024 80.54 | 65.25 | 43.97
123678 | 102260 | 23678

Running Times. Each test was run three times on a different input set. The

tables show the average values.

There are some things to observe. First, the modified-visibility-method is
always slightly faster then the unchanged visibility-method. Next, the segment-
walk-method searches significantly fewer simplices than the modified-visisibility-
method, which searches slightly fewer simplices than the visibility-method.
However this results not in a better running time for the segment-walk-method
before some size of the triangulation is reached.
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collect new facets 73) Used in section 69.

collect visible base facets 65) Used in section 63.

copy newfacets to visible facets 66) Used in section 63.

delete inner point 53) Used in section 51.

delete non-dimjmp 63) Used in section 54.

find new dimjump 60) Used in section 59.

get new dimension jump 59) Used in section 54.

handle lost simplices for points 77) Used in section 63.

handle non-triv cases 54) Used in section 51.

initialize newfacets 64) Used in section 63.

insert point in a new simplex 74) Used in section 63.

look for neighborhood of unbounded simplex 71) Used in section 69.

main.c 11)

put in neighborhood and newfacets 69) Used in section 68.

rand.c 98)

reduce dimension 58) Used in section 54.



84 LIST OF REFINEMENTS

(set up variables 55) Used in section 54.

(special treatment of newly built origin simplex 76) Used in section 63.
(take care for new origin_simplex 62) Used in section 59.

(test edge facets 70) Used in section 69.

(test newfacets 72) Used in section 69.



